Water immiscible porogen removal process

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Cellular products or processes of preparing a cellular...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S061000, C525S344000, C526S323200, C526S336000

Reexamination Certificate

active

06673847

ABSTRACT:

BACKGROUND
The use of solvents as porogens in the preparation of macroreticular polymers is known to those skilled in the art. See, EP 0135292, U.S. Pat. Nos. 6,107,429, 5,830,967, U.S. Pat. No. 5,955,552 and U.S. Pat. No. 6,323,249. However, solvents which are used as porogens in the preparation of macroreticular polymers have to be removed after polymerization. There are three commonly used porogen-removal processes depending on the type of porogen. Some porogens like 4-methyl-2-pentanol and isobutanol which form azeotropes with water, being slightly water soluble, can be simply distillated and recycled. Other porogens such as those having a high molecular weight and a high boiling point can be removed by solvent extraction. Then the residue solvent in the beads can be removed by distillation. However, low molecular weight and low boiling point porogens, like isooctane and hexamethyldisiloxane are highly water insoluble. These low molecular weight and low boiling point porogens present a particularly difficult problem. Simple distillation is very inefficient in removing these highly water insoluble porogens from copolymer beads such as polystyrene-divinylbenzene copolymer beads. Solvent extraction can be used to remove these type porogens but, the separation of the porogen from the extracting solvent is difficult. Steam can be used to remove these porogens but the copolymer beads have to be sufficiently rigid to survive the harsh steam conditions. In the case of copolymers with relatively low levels of crosslinker, their relatively low glass transition temperature (Tg), will lead to unrecoverable pore collapse, and possible melting, if the steam temperature is higher than polymer Tg.
Now, Applicant has discovered a method for removing highly water insoluble porogens, such as isooctane and hexamethyldisiloxane, that does not destroy the desired porosity of the copolymer, even if the copolymer has very low level of crosslinker.
SUMMARY OF THE INVENTION
The present invention relates to a method of removing water insoluble porogens from macroreticular copolymers comprising distilling said porogen in the presence of a water soluble organic solvent selected from the group consisting of 2-methoxyethanol, di(ethylene glycol) mono-methyl ether, di(ethylene glycol) mono-ethyl ether, di(ethylene glycol) mono-butyl ether, di(ethylene glycol) dimethyl ether, di(ethylene glycol) diethyl ether, di(ethylene glycol) ethyl ether acetate, poly(ethylene glycol) mono-methyl ether, tri(ethylene glycol), tri(ethylene glycol) mono-methyl ether, tri(ethylene glycol) mono-ethyl ether, poly(ethylene glycol) dimethyl ether, poly(ethylene glycol)-co-(propylene glycol) having a viscosity of less than 200 cps; 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, dimethyl sulfate and mixtures thereof.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of removing water insoluble porogens from macroreticular copolymers comprising distilling said porogen in the presence of a water soluble organic solvent selected from the group consisting of 2-methoxyethanol, di(ethylene glycol) mono-methyl ether, di(ethylene glycol) mono-ethyl ether, di(ethylene glycol) mono-butyl ether, di(ethylene glycol) dimethyl ether, di(ethylene glycol) diethyl ether, di(ethylene glycol) ethyl ether acetate, poly(ethylene glycol) mono-methyl ether, tri(ethylene glycol), tri(ethylene glycol) mono-methyl ether, tri(ethylene glycol) mono-ethyl ether, poly(ethylene glycol) dimethyl ether, poly(ethylene glycol)-co-(propylene glycol) having a viscosity of less than 200 cps; 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, dimethyl sulfate and mixtures thereof.
Porogens that can be removed by the method of the present invention are water immiscible and relatively volatile, having a boiling point of less than about 180° C., more preferably less than about 150° C. at one atmosphere. Examples of such porogens include, but are not limited to, straight or branched alkanes having 5-12 carbon atoms like isooctane, heptane, hexanes, pentane; cycloalkanes having 5-12 carbon atoms like cyclohexane, methylcyclohexane; aromatic solvents like toluene, xylene, benzene; volatile silicones like hexamethyldisiloxane, decamethyltetrasiloxane. Other porogens that can be removed by the method of the present invention include water immiscible C
4
-C
15
alcohols like 4-methyl-2-pentanol; esters like butyl acetate; and ethers like dibutyl ether with boiling points of less than about 180° C.
Water soluble organic solvents useful in the practice of the present invention have the following properties: (1) said solvent is compatible with water or soluble in water, so the residue of the solvent can be removed by water washing at the end of the distillation. (2) said solvent is incapable of swelling the copolymer matrix and it exerts essentially no solvent action on the copolymer (3) said solvent should be stable or chemically inert under the distillation condition and can be recycled. (4) said solvent should have a higher boiling point than that of the porogen, so the porogen is mainly removed without removing the adding solvent during the distillation.
Preferred water soluble organic solvents which meet above requirements are poly(ethylene glycol) of following formula: R
1
—(OCH
2
CH
2
)n—OR
2
, wherein group R
1
and R
2
can be H, benzyl or C
1
-C
15
alkyl groups, preferred alkyl group having 1 to 6 carbon atoms, R
1
and R
2
can be the same or different groups. The number (n)of ethylene glycol (OCH
2
CH
2
) repeating units can be from 1 to 500, preferred from 1 to 100, more preferred from 1-50, most preferred from 1-20. Non limiting examples of preferred water soluble organic solvents are 2-methoxyethanol, di(ethylene glycol) mono-methyl ether, di(ethylene glycol) mono-ethyl ether, di(ethylene glycol) mono-butyl ether, di(ethylene glycol) mono-hexyl ether, di(ethylene glycol) dimethyl ether, di(ethylene glycol) diethyl ether, di(ethylene glycol) dibutyl ether, tri(ethylene glycol), tri(ethylene glycol) dimethyl ether, tri(ethylene glycol) mono-ethyl ether, di(ethylene glycol) ethyl ether acetate, poly(ethylene glycol) mono-methyl ether, poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) dibenzoate; water miscible poly(propylene glycol) or poly(ethylene glycol)-co-(propylene glycol) having a viscosity of less than 500 cps, and mixtures thereof.
Other examples of preferred water soluble organic solvents are polyvinyl alcohol, and poly(vinyl pyrrolidine), and polyacrylate salts having molecular weight less than 10000, more preferred less than 2000 and most preferred less than 500.
Still other examples of preferred water soluble organic solvents are 1,2- or 1,3-propanediol, 1,3- or 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, cyclohexanediol, or cyclohexanetriol, dimethylformamide, and dimethyl sulfate.
More preferred water soluble organic solvents are 2-methoxyethanol, di(ethylene glycol) mono-methyl ether, di(ethylene glycol) mono-ethyl ether, di(ethylene glycol) mono-butyl ether, di(ethylene glycol) mono-hexyl ether, di(ethylene glycol) dimethyl ether, di(ethylene glycol) diethyl ether, di(ethylene glycol) dibutyl ether, tri(ethylene glycol), tri(ethylene glycol) dimethyl ether, tri(ethylene glycol) mono-ethyl ether, di(ethylene glycol) ethyl ether acetate, poly(ethylene glycol) mono-methyl ether, poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) dibenzoate; water miscible poly(propylene glycol) or poly(ethylene glycol)-co-(propylene glycol) having a viscosity of less than 500 cps, polyvinyl alcohol, and poly(vinyl pyrrolidine), and polyacrylate salts having molecular weight less than 1000; 1,2- or 1,3-propanediol, 1,3- or 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, cyclohexanediol, or cyclohexanetriol, dimethylformamide, dimethyl sulfate and mixtures thereof.
The most preferred examples of water soluble solvents are 2-methoxyethanol, di(ethylene glycol) mono-methyl ether, di(ethylene glycol) mono-ethyl ether, di(ethylene glycol) mono-butyl ether,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water immiscible porogen removal process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water immiscible porogen removal process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water immiscible porogen removal process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196522

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.