Liquid purification or separation – Processes – Chemical treatment
Reexamination Certificate
1998-10-28
2001-03-13
Simmons, David A. (Department: 1724)
Liquid purification or separation
Processes
Chemical treatment
C210S232000, C426S067000
Reexamination Certificate
active
06200488
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a water bottle cap and, more particularly, a water bottle cap for sealing a water bottle containing water supersaturated with oxygen. The water bottle cap of the present invention is designed to help maintain the supersaturated oxygen level of the oxygenated water in the water bottle from the time of bottling throughout the usage cycle of the water bottle.
BACKGROUND OF THE INVENTION
Bottles containing water are normally transported to a location having a water cooler, and are stored until needed. When replacement is necessary, a seal on the bottle cap of the water bottle is removed and the water bottle is inverted and placed on the top section of the water cooler. Typically, water flows from the water bottle to a tank in the water cooler where the water is cooled. The water is dispensed from the tank through a spigot or similar device.
A water bottle cap is generally designed to prevent leakage of water from the water bottle during transportation, storage, and dispensing. Some bottle caps are even designed to prevent water from spilling onto the floor or other surface when an inverted, partially empty water bottle is removed from a water cooler. Unfortunately, currently available bottle caps are not suitable for use with water bottles containing water that is supersaturated with oxygen or other gases, or bottles containing fluids under pressure. Specifically, such bottle caps are not configured to help maintain the oxygen content of oxygenated water within a water bottle during the transportation and storage of the water bottle, and during the dispensing of the oxygenated water from the water bottle when mounted on a water cooler. The bottle caps are not capable of preventing leakage of oxygen from the water bottle, and cannot contain pressure above ambient levels within the water bottle.
It would, therefore, be highly desirable to provide a new and improved bottle cap for a water bottle containing oxygenated water, wherein the bottle cap is capable of preventing leakage of oxygen and pressure from the water bottle during transportation and storage of the water bottle, and wherein the bottle cap helps to maintain the oxygen level of the oxygenated water within the water bottle throughout the entire usage cycle of the water bottle.
The present invention also relates to a new and improved water cooler for dispensing oxygen enriched water. Oxygen enriched drinking water has an enhanced taste appeal and offers the health and fitness conscious consumer an alternative and supplemental source of oxygen that is absorbed through the stomach. The term drinking water is intended to include, without limitation, spring water, filtered water, or water treated by the reverse osmosis process.
The dissolved oxygen content of natural pure spring water ranges from between about 5 mg/liter to 9 mg/liter depending on the source of the water, purification and processing techniques applied prior to bottling, and other factors. The water can be supersaturated with oxygen by injecting molecular oxygen into a water pipeline controlled at a pressure of 40-90 PSIG (pounds per square inch gage), or using other known methods. Using this technique, the dissolved oxygen level of the water can be increased to about 25-125 mg/liter. If bottled immediately and hermetically sealed, using the bottle cap of the present invention, in bulk glass bottles or other suitable containers, the oxygenated water will maintain the elevated dissolved oxygen level indefinitely.
Bulk water bottles typically are in the 3-5 gallon range. Upon opening a bulk water bottle containing water that is supersaturated with oxygen, and which includes a conventional bottle cap, and installing the water bottle on a standard water cooler, the dissolved oxygen in the water decreases to near the baseline level of about 5-9 mg/liter within about 3-5 days. Since the average time required to consume a 3-5 gallon bulk water bottle typically is in the 10-14 day range, the rapid decrease in dissolved oxygen prevents the commercial marketing of oxygen enriched drinking water in 3-5 gallon bulk bottles for use on standard water coolers.
It would, therefore, also be highly desirable to provide a new and improved water cooler for dispensing oxygen enriched water wherein the dissolved oxygen content of water in the water bottle installed on the water cooler is maintained at or about the original supersaturated level during the entire time oxygenated water is dispensed from the bottle by the water cooler, i.e., during the entire usage cycle of the water bottle.
SUMMARY OF THE INVENTION
The present invention provides a new and improved water bottle cap for a bulk water bottle containing oxygenated water under pressure. The bottle cap of the present invention prevents leakage of oxygen and pressure from the water bottle during transportation and storage of the water bottle, and helps to maintain the oxygen level of the oxygenated water within the water bottle throughout the usage cycle of the water bottle.
The bottle cap of the present invention is attached to a water bottle immediately after oxygen enriched water is introduced into the water bottle at a bottling plant. The bottle cap is typically placed over the opening formed in the neck of the water bottle. From this point on, throughout the usage cycle of the water bottle, the bottle cap helps to maintain the supersaturated level of oxygen in the oxygenated water contained in the water bottle.
After bottling, the water bottle is typically transported to a location having a water cooler, and is stored until needed. During transportation and storage of the water bottle, the water bottle is often shaken, handled, etc., in a rough manner, and is often transported and stored on its side such that the water therein applies a force against the bottle cap. A conventional bottle cap is generally not capable of handling such stresses, especially when the water in the water bottle is held under pressure, and will often crack, leak, or otherwise malfunction, thereby allowing the oxygen within the oxygenated water stored in the water bottle to escape. The bottle cap of the present invention, however, has been ingeniously reinforced to withstand such rough handling and the increased pressure within the water bottle without failing, thereby ensuring that the oxygen level of the oxygenated water in the water bottle remains at a supersaturated level.
The bottle cap of the present invention includes a reinforced seal to further strengthen the bottle cap and to enhance the pressure sealing performance of the bottle cap. When replacement is necessary, the reinforced seal on the bottle cap of the water bottle is removed and the water bottle is inverted and placed on the top section of a water cooler. A probe sleeve in the bottle cap seals around the feed probe of the water cooler, preventing the loss of pressurized oxygen or water from the water bottle. In use, when oxygenated water flows from the water bottle into the tank in the water cooler, make-up oxygen is pumped through the feed probe into the water bottle in order to maintain pressurized oxygen (about 2 PSIG) in the water bottle.
Thus, the bottle cap of the present invention prevents the leakage of water, pressure, and oxygen from a water bottle containing oxygenated water under pressure.
In order to provide the requirements mentioned above, the improved water bottle cap of the present invention generally includes a flexible plastic body, two layers of foil heat glued to the outer top surface of the body, a reinforcing element positioned against the inner top surface of the body, a gasket located adjacent the reinforcing element, and a band tightened around an outer peripheral portion of the body.
Although described for use with water bottles containing oxygenated water under pressure, it should be readily apparent that the bottle cap of the present invention may be used on bottles or other bulk containers containing “normal” unoxygenated water or other fluids, containing fluids that have been supersa
Crowley Dennis E.
Ritton Jason
Hoey Betsey Morrison
Oxygen8, Inc.
Schmeiser Olsen & Watts
Simmons David A.
LandOfFree
Water bottle cap does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Water bottle cap, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water bottle cap will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2437563