Water-blown foams of low apparent density

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Cellular products or processes of preparing a cellular...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S130000, C521S131000, C521S170000, C521S174000

Reexamination Certificate

active

06822011

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to foam having an apparent density of less than 100 kg/m
3
prepared with water as the predominant blowing agent and to uses thereof. Further the invention relates to foams having a large proportion of open cells (>80%).
BACKGROUND OF THE INVENTION
Rigid polyurethane foams are generally distinguished by their low thermal conductivity. Foams having closed cells are used for the heat insulation of hot-water cylinders, buildings, refrigerators and cooling cells, doors, pipes and tanks. Often rigid foams are also used in direct conjunction with other materials. Closed-cell polyurethane foams are nowadays mostly produced using physical blowing agents such as chlorofluorohydrocarbons, fluorohydrocarbons, hydrocarbons and chlorofluorocarbons. Besides their considerable advantages in improving heat insulation, such materials often have disadvantages with environmental compatibility or safety in the workplace due to their effect on the ozone layer or due to their combustibility. Their use is therefore limited by international agreements or is associated with, in some cases, considerable costs as a result of the necessary safety measures.
If physical blowing agents are dispensed with and water is used on its own as a chemical blowing agent, good heat-insulating foams can likewise be produced. Due to the uneven rates of diffusion of carbon dioxide out of the cells of the foam and of air into those cells, a sub-atmospheric pressure will result in the cells when the foam contains predominantly closed cells. The mechanical load associated therewith can make it necessary for closed-cell rigid foams blown solely with water to have a higher strength and therefore a higher weight per unit volume than foams produced using physical blowing agents. Foams of good dimensional stability and having the same, or lower, weights per unit volume as those customarily achieved using physical blowing agents can be obtained if a high content of open cells is established in the foam. The thermal conductivity is then slightly higher, but is still adequate for many of the above-mentioned applications.
There are various possible methods of adjusting the content of open cells. First of all, polyol formulations in the form of a suspension of fine particles or in the form of emulsions are suitable. Such particles can be fluorinated polymers, as disclosed in U.S. Pat. Nos. 5,250,579, 5,856,678, and 5,721,284, salts of saturated carboxylic acids (including fatty acids) having divalent or lithium cations, see for example U.S. Pat. Nos. 5,262,447 and 5,457,138, WO 96/37533, EP-A 547 515, and EP-A 581 191, or thermoplastic polymers such as SAN or polyethylene, as disclosed in U.S. Pat. No. 5,457,138, WO 99/60045, and EP-A 1 108 514, which are added to the polyol component. According to U.S. Pat. Nos. 5,519,068 and 5,318,997, the addition of from 5 to 55% of a long-chain polyether having an OH number <60 and an EO content <5% is equally as suitable as the addition of extremely short-chain monofunctional alcohols, see also U.S. Pat. No. 5,889,067. Typical cell-opening additives are also special silicones or polyolefin waxes, as described in U.S. Pat. Nos. 5,852,065 and 5,614,566.
Typical disadvantages of such approaches are the separation of water-containing polyol formulations during storage, and the sedimentation of fine particles. For example, it is known that PTFE-containing polyols must be stirred before processing. SAN-containing polyol formulations are phase-stable only in the absence of the blowing agent water. At high water contents, such as are necessary in order to obtain foams of low apparent density, slow hydrolysis with mediation of the amines contained in the polyol can occur over the period of storage in the case of formulations containing polyester polyols.
SUMMARY OF THE INVENTION
It has now been found that those problems can be solved by suspending, emulsifying or dissolving polymers in an isocyanate and reacting the isocyanate-containing component so obtained with a water-containing polyol formulation typical for rigid polyurethane foams in a NCO/(OH+NH) ratio of from 0.5 to 3.5.


REFERENCES:
patent: 4695596 (1987-09-01), Berkowitz
patent: 5179146 (1993-01-01), Muller et al.
patent: 5451614 (1995-09-01), Green et al.
patent: 5919395 (1999-07-01), Bastin et al.
patent: 0 258 681 (1988-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water-blown foams of low apparent density does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water-blown foams of low apparent density, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water-blown foams of low apparent density will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.