Water-based drilling fluid for use in shale formations

Earth boring – well treating – and oil field chemistry – Earth boring – Contains inorganic component other than water or clay

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

507141, 507145, 16625002, 166282, C09K 702

Patent

active

059255986

ABSTRACT:
A water-based drilling fluid for use in shale formations having a given average pore size has solutes dissolved therein sized so as to allow the pores of the shale formations to at least partially restrict the solutes. For purposes of enhancing the restriction of the solutes by the shale pores, the dissolved solutes may have different radii. Additional solutes, preferably lower molecular weight salts, are dissolved in the drilling fluid to lower the activity of the water in the water-based drilling fluid.
The same combination of additives, a first additive of dissolved molecular solutes sized to at least partially block a shale pore space and a second additive of dissolved molecular solutes selected to lower the water activity, are combined in a water-based carrier fluid and used in earth boreholes surrounded by shale formations as either a spotting fluid, or as a lubricant, or as a shale formation strengthener or as a completion fluid.

REFERENCES:
patent: 3628615 (1971-12-01), Chenevert
patent: 3679001 (1972-07-01), Hill
patent: 3746109 (1973-07-01), Darley
patent: 3850817 (1974-11-01), Barthel
patent: 3878110 (1975-04-01), Miller et al.
patent: 4240924 (1980-12-01), Block
patent: 4526693 (1985-07-01), Son et al.
patent: 4741843 (1988-05-01), Garvey et al.
patent: 5134118 (1992-07-01), Patel et al.
patent: 5211250 (1993-05-01), Kubena, Jr. et al.
"A Borehole Stability Model to Couple the Mechanics and Chemistry of Drilling Fluid Shale Interaction", SPE/IADC 25728 By: F.K. Mody & A.J. Hale, pp. 473-490.
"Detailed Analysis of Rock Failure in Laboratory Compression Tests", (1968) By: W.R. Wawerski, Ph.D. Thesis, Univ. Minnesota, pp. 2916-B and 2917-B.
"Critical Parameters in Modeling the Chemical Aspects of Borehole Stability in Shales and in Designing Improved Water-Based Shale Drilling Formations", SPE 28309, By: E. van Oort, A.H. Hale, F.K. Mody, pp. 171-186 (1994).
"Experimental Investigation of the Influence of Chemical Potential on Wellbore Stability", IADC/SPE 23885 By: A.H. Hale, F.K. Mody & D.F. Salisbury, pp. 377-389 (1992).
"Borehole Stability in Shales", SPE 24975, SPE Drilling & Completion, Jun. 1994 By: G.M. Bol, S.W. Wong, C.J. Davidson & D.C. Woodland, pp. 87-94.
"Quantitative Determination of the Mechanical Properties of Shales", SPE 18024 By: R.P. Steiger & P.K. Leung, pp. 69-76, (1988).
"Drilling Fluid Induced Borehole Instability in Shales", SPE/ISRM 28064 By: E. van Oort, pp. 291-309 (1994).
"Borehole Stability in Shales: A Constitutive Model for the Mechanical and Chemical Effects of Drilling Fluid Invasion", SPE/ISRM 28059 By: S.W. Wong & W.K. Heidug, 8 pp., (1994).
"Biot Poroelasticity of a Chemically Active Shale", Proc. R. Soc. Lond. (1993) pp. 365-377, By: J.D. Sherwood.
"Environmentally Acceptable Water-Based Mud Can Prevent Shale Hydration and Maintain Borehole Stability", IADC/SPE Drilling Conference, Dallas, TX (1994) By: J.P. Simpson, T.O. Walker & G.Z. Jiang, IADC/SPE 27496, 13 pp.
"The Influence of Moisture Content on the Compressive Strength of Rocks" Proc. Rock Mech. Symp., pp. 65-83 (1965), By: P.S.B. Colback & B.L. Wild.
"Temperature and Humidity Affect Strength of Rock Structures at White Pine", Society of Mining Engineers, AIME, vol. 247 pp. 142-143, 146-149, (1970), By: J. Parker.
"The Influence of Moisture on the Pre-Rupture Fracturing of Two Rock Types" vol. 2, pp. 239-245, 2nd Int. Conf. Rock Mech. (1970), By: B.L. Wild.
"The Phenomena of Rupture and Flow in Solids", Royal Society of London, Series A, vol. 221, pp. 163-198, By: A.A. Griffith (1920).
"Crack Growth and Faulting in Cylindrical Specimens of Chelmsford Granite", Int. J. Rock Mech. Min. Sci., vol. 9, pp. 37-86 (1970) By: S. Peng and A.M. Johnson.
"A Test of the Law of Effective Stress for Crystalline Rocks of Low Porosity", Int. J. Rock Mech. Min. Sci., vol. 5, pp. 415-426 (1968) By: W.F. Brace and R.J. Martin III.
"Strain Rate Effects in Kimmeridge Bay Shale", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 26, pp. 135-149 (1989) By: G. Swan, J. Cook, S. Bruce & R. Meehan.
"Effects of Strain Rate and Confining Pressure on the Deformation and Failure of Shale", IADC/SPE 19944 By: J.M. Cook, M.C. Sheppard & O.H. Houwen, pp. 291-296.
"The Effects of Cracks on the Uniaxial Elastic Compression of Rocks", Journal of Geophysical Research, vol. 70, No. 2 (1965), pp. 399-411 by J.B. Walsh.
"Swelling of Mudstone Due to Sucking of Water", Proceedings of the First Congress of the International Society of Rock Mechanics, (1966) 5 pp. By: Sakuro Murayama, Norio Yagi.
"Adsorptive Pore Pressures of Argillaceous Rocks", Rock Mechanics Theory and Practice (W.H. Somerton, Ed.), pp. 599-627 (1970) By: M.E. Chenevert.
"Force Fields and Chemical Equilibrium in Heterogeneous Systems with Special Reference to Soils", Soil Science, vol. 71, pp. 409-418 (1953) By: P.F. Low.
"Effects of Ions on the Self-Diffusion and Structure of Water in Aqueous Electrolytic Solutions", J. Phys. Chem, vol. 58, pp. 686-692 (1954) By: J.H. Wang.
"Self-Diffusion and Structure of Liquid Water. III. Measurement of the Self-Diffusion of Liquid Water with H.sup.2, H.sup.3 and O.sup.18 as Tracers", J. Am. Chem. Soc., vol. 75, pp. 466-470 (1952), By: J.H. Wang, C.V. Robinson & I.S. Edelman.
"Movement of Water as Effected by Free Energy and Pressure Gradients: I. Application of Classical Equations for Viscous and Diffusive Movements to the Liquid Phase in Finely Porous Media", Soil Science Society of America Proceedings, vol. 25, pp. 255-260 (1961), By: W.D. Kemper.
"Movement of Water as Effected by Free Energy and Pressure Gradients: II. Experimental Analysis of Porous Systems in Which Free Energy and Pressure Gradients Act in Opposite Directions", Soil Science Society of America Proceedings, vol. 25, pp. 260-265 (1961), By: W.D. Kemper.
"Movement of Water as Effected by Free Energy and Pressure Gradients III. Restriction of Solutes by Membranes", Soil Science Society of America, vol. 27, pp. 485-490 (1963), By: W.D. Kemper and N.A. Evans.
"Osmotic Flow of Water Across Permeable Cellulose Membranes", The Journal of General Physiology, vol. 44, pp. 315-326 (1960) By: R.P. Durbin.
Reduced Environmental Impact and Improved Drilling Performance with Water-Based Muds Containing Glycols, SPE 25989 (1993) By: P.I. Reid, G.P. Elliot, R.C. Milton, B.D. Chambers & D.A. Burt.
"TAME: A New Concept in Water-Based Drilling Fluids for Shales", SPE 26699 (1993) By: J.D. Downs, E. van Oort, D.I. Redman, D. Ripley & B. Rothmann.
E. van Oort, A. H. Hale, and F.K. Mody: "Manipulation of Coupled Osmotic Flows for Stabilisation of Shales Exposed to Water-Based Drilling Fluids." SPE 30499, Society of Petroleum Engineers, 1995.
Philip F. Low: "Force Fields and Chemical Equilibrium in Heterogeneous Systems with Special Reference to Soils." Soil Science, vol. 71, pp. 409-418, 1951.
Marcel Mulder: "Polarisation Phenomena and Membrane Fouling." In Basic Principles of Membrane Technology, Chapter VII, pp. 281-311. Dordrecht: Kluwer Academic Publishers, 1991.
Staverman, A.J.: "The Theory of Measurement of Osmotic Pressures." Recueil des Travaux Chimiques des Pays-Bas, vol. 70, pp. 344-352, 1951.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water-based drilling fluid for use in shale formations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water-based drilling fluid for use in shale formations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water-based drilling fluid for use in shale formations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1321775

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.