Liquid purification or separation – With gas-liquid surface contact means
Reexamination Certificate
2000-04-10
2001-02-13
Barry, Chester T. (Department: 1724)
Liquid purification or separation
With gas-liquid surface contact means
C210S617000
Reexamination Certificate
active
06187183
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to systems for treating waste water. More particularly, the present invention relates to waste water treatment systems including biological media used to aerobically treat solid waste in the waste water. Still more particularly, the present invention relates to such treatment systems for large-, and small-scale waste water systems. The present invention includes novel methods for effectively treating waste water in a way that minimizes the size of the system required to output high-quality, environmentally-suitable, water.
2. Description of the Prior Art
Waste water treatment systems are ubiquitous, from the smallest single-family residence septic system, to industrial facilities for commercial operations and municipalities large and small. It is always the object of such systems to treat for total suspended solids (TSS), biochemical oxygen demand (BOD), nitrogen compounds,
E
-
coli
, phosphorous, and virtually any other bacteria, so as to minimize the quantity of such undesirables output by the system. Various well known means have been devised for achieving such goals, with varying degrees of success and efficiency. An overriding general problem, for the most part, with such prior systems has been the scale of operation required to effectively treat that water with high-quality output. That is, for the volumes of water to be treated, the sizes of these systems are correspondingly large. This may be particularly true for relatively small-scale systems, such as single-family residences and small groupings of homes and/or buildings, where coupling to a municipal treatment system may be unsuitable.
In the array of systems designed to treat waste water, many include the use of biological treatments to accelerate the breakdown of solids and the various contaminants associated with waste water. This biological treatment involves the use of microbes having an affinity for the pollutants contained in the water. That is, rather than simply permit solids to slowly decant from the waste water, and then apply a hazardous chemical treatment designed to destroy the pollutants—along with virtually everything else in the water—these microbes are permitted to act upon the waste water. In relative terms, they act to remove the pollutants faster than if nothing were used, and do so without the hazardous and difficulties associated with chemical treatment. They must, however, be permitted to reside in some type of holding tank in order to multiple and feed on the contaminants. Upon completion of their ingestion of the pollutants, the microbes simply die and end up as waste solids that fall to the bottom of the treatment tank or unit for subsequent removal. The treated water then passes to the next stage, which may simply be some form of a leach bed, or it may be a more complex system, including, but not limited to, an ultraviolet disinfection means for subsequent transport to a body of water, or for recycling in non-critical uses, such as horticulture.
Unfortunately, while aerobic and anaerobic microbe treatment has significant advantages, it is not exceedingly effective in that it is necessary to provide sufficient “dwell time” for the microbes to “eat” enough of the pollutants so that the waste water is rendered satisfactorily contaminant-free. Of course, the extent to which contaminant removal is satisfactory is a function of governmental regulation. In any case, the volume of water that must be treated can often lead to the need for a rather large-scale treatment unit for a relatively small waste-water-generating facility. As a result, there is often a compromise in the prior systems, which compromise is associated with the contamination-removal requirements, the space available to treat the waste water output, and the cost associated with both.
Another problem with such prior systems has been their efficiency over a period of time of use. When the waste water to be treated requires the use of a considerable amount of biological mass, there results a problem of “plugging” of the mass. That is, as waste solids build up on the surface of the mass, or as microbes ingest the pollutants and die they do not always fall to the bottom of the tank. Instead, they become trapped at or near the surface of the mass. This plugging or blocking of the mass significantly reduces the pathways by which subsequent pollutants may pass through to underlying active microbes that are located below the surface of the mass. There are two negative results: 1) the acceleration of pollutant decay caused by microbe ingestion is canceled; and 2) water flow through the mass is reduced and possibly even stopped. It is therefore necessary to either build a substantially larger unit than would otherwise be required—in order to account for this plugging—or to expend the effort to clean the clogged system. Such maintenance may include the introduction of agitation means or the use of pressurized water for removal of dead microbes, and the reintroduction of active ones on a regular basis.
Several prior waste-water treatment systems have been described. These systems have apparently been designed for large- and/or small-scale treatment using biological media to accelerate contaminant reduction. For the most part, they include biological treatment as well as mechanisms designed to enhance the effectiveness of the microbial action. However, each in turn suffers from one or more deficiencies that significantly affect the ability to provide the most effective and relatively inexpensive waste treatment system.
U.S. Pat. No. 4,005,010 issued to Lunt describes the use of mesh sacks containing the biological medium. The sacks are apparently designed to hold the microbes while allowing fluids to pass through. This unit nevertheless may still result in plugging in that the biological medium will likely become clogged during the course of its usage. U.S. Pat. No. 4,165,281 issued to Kuriyama et al. describes a waste water treatment system that includes a mat designed to contain the microorganisms. A plurality of mats are disposed vertically and waste water is supposed to pass therethrough. The likelihood of plugging is greater in this unit than in the Lunt device because of the orientation of the mats and the difficulty in maintaining and/or replacing them.
U.S. Pat. No. 4,279,753 issued to Nielson et al. describes the arrangement of a plurality of treatment reactors, alternating from aerobic to anaerobic action. There may be some advantage in using a plurality of small tanks rather than one large tank to achieve the decontamination required in that dwell time is increased; however, this is certainly more costly than is necessary. Moreover, while Nielson indicates that it is necessary to address plugging problems, the technique for doing so is relatively crude and likely not completely effective. U.S. Pat. No. 4,521,311 issued to Fuchs et al. teaches the use of a filtering bed through which the waste water passes and which includes support bedding to suspend the biological medium. The device has a rather complex recirculation process required in order to ensure cleaning of the bedding and the microbes. This device may experience clogging of another sort, and the bedding particles described by Fuchs are required to go through a costly operation for maintenance.
U.S. Pat. No. 5,202,027 issued to Stuth describes a sewage treatment system that includes a buoyant medium in the shape of large hollow balls designed to provide a site for microbial growth. The buoyant balls form but a small portion of the system, which includes a series of complex turbulent mixing sections. The Stuth device is relatively complex and likely requires considerable energy to operate in order to ensure the mixing apparently required.
U.S. Pat. No. 5,221,470 issued to McKinney describes a waste water treatment plant having a final filter made of a sheet of plastic. The sheet of plastic is wrapped about itself so as to form passageways designed for microbe growth. While this design may in
Gray James R.
Monroe James C.
Weaver Lloyd
Barry Chester T.
Hamilton Brook Smith & Reynolds P.C.
Septitech, Inc.
LandOfFree
Waste water treatment process and system with filtering media does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Waste water treatment process and system with filtering media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Waste water treatment process and system with filtering media will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2608595