Waste processing system and related methods

Liquid purification or separation – With alarm – indicator – register – recorder – signal or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S170050, C210S259000, C210S416100, C405S128350, C405S263000, C588S017000

Reexamination Certificate

active

06322693

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a waste processing system comprising a first mixing tank system with an agitation system, a first separation system, a slurry tank system with a shearing system, a second separation system and a second mixing tank system with an agitation system. The present invention also relates to methods of processing waste.
BACKGROUND OF INVENTION
The disposal of waste such as drilling waste (e.g., cuttings, muds, reservoir pit, fluids, etc.) from drilling various types of wells has become an increasingly difficult problem due to restrictions imposed by various governmental authorities and agencies, and the desire to minimize environmental damage. These problems are aggravated or at least amplified in certain wellbore drilling operations, particularly in offshore drilling operations, wherein the disposal of wastes normally requires transport of the waste to a suitable landfill or shore-based processing system or an offsite commercial nonhazardous oilfield waste facility. Disposal of nonhazardous oilfield waste (NOW) can be disposed of by the above methods.
Another method of disposing of drilling waste is to dispose of such waste down a wellbore of a non-productive reservoir of an exploratory well. Drilling operators, regulators and government authorities are trying to determine whether the above method can be applied to injecting productive pit solids contaminated with naturally-occurring radioactive material (NORM) either alone or in combination with NOW, into non-productive reservoirs.
SUMMARY OF THE INVENTION
The present invention relates to a waste disposal system comprising at least one mixing tank system comprising at least one mixing tank having an agitation system situated within each of the mixing tanks, a first separation system having at least one separation device, at least one slurry tank system comprising at least one slurry tank having a shearing system situated within each of the slurry tanks, and a second separation system having at least one separation device. In one embodiment, the waste processing system further comprises a plurality of conduits for connecting the mixing tank system, the first separation system, the slurry tank system, and the second separation system. Conduits or flow conduits are a piping system that connect each component of the waste system to one another and is subsequently connected to an injection pump for injecting the processed waste into a wellbore.
In another embodiment, the mixing tank system can comprise at least one mixing tank having a jet line and a sampling system for testing the waste. The sampling system is a system that can be installed throughout different stages of the waste process system that enables the user to test samples of the processed waste in order to obtain a more controllable product.
In still another embodiment, the agitation system of the mixing tank system can comprise a gear box, at least one motor and a plurality of blades. In yet another embodiment, the first and second separation system comprises at least one separation device having at least one screen or a plurality of screens with varying screen mesh sizes. The screen mesh sizes are dependent upon the size of the particles of waste being processed. The separation devices include, but are not limited to, vibrating screens such as shale shakers.
In still a further embodiment, the slurry tank system can compromise at least one slurry tank having a shearing system situated within each of the slurry tanks. The shearing system can comprise a gear box, at least one motor, a plurality of blades, a shearing mixer, and gun lines. The slurry tanks can also have a manifold system. The manifold system is designed to re-circulate materials throughout the system so that a user can adjust the fluid and flow rates of the waste processing system of the present invention. For purposes of this invention, gun lines are mechanical agitators of the processed fluid and wastes traveling through the waste processing system.
In one embodiment, the system of the present invention further comprises a second slurry tank system connected to the second separation system. The second slurry tank system comprises at least one slurry tank having a shearing system situated with each of the tanks. The shearing system is similar to the shearing system of the first slurry tank system.
In another embodiment, the waste processing system of the present invention further comprises a second mixing tank system connected to the second separation system. The second mixing tank system comprises at least one mixing tank having an agitation system situated within each of the tanks. The agitation system is similar to the agitation system in the first mixing tank system. The agitation system of the present invention includes shearing devices and shearing systems.
In still another embodiment, the system of the present invention further comprises a pump system for pumping waste through the system. The pump system can comprise a plurality of injection pumps and centrifugal pumps. In still yet another embodiment, the mixing tank system may comprise at least one mixing pump and the slurry tank system may comprise at least one shearing pump.
In a further embodiment, the waste processing system further comprises at least one holding tank. The holding tank retains the processed waste until it is ready to be injected into the wellbore. In still another embodiment, the holding tank can be adapted to be transported to the injection site.
In another embodiment, the present invention relates to a waste processing system comprising: (a) a first mixing tank system comprising at least one mixing tank having a first agitation system situated within each of said mixing tanks, (b) a first separation system comprising at least one separation device and being connected to the first mixing tank system, (c) a slurry tank system comprising at least two slurry tanks having a shearing system situated within each of the slurry tanks, the slurry tank system being connected to the first shale shaker system; (d) a second separation system comprising at least two separation devices and being connected to the slurry tank system; and (e) a second mixing tank system comprising at least two mixing tanks, each of the tanks having a second agitation system within the tanks, the second mixing tank system being connected to the second separation system.
In a further embodiment, the first and second mixing tank systems can comprise at least one mixing tank having a jet line. The second mixing tank system can comprise at least one mixing tank having a sampling system for testing the waste. The sampling system can be installed throughout the different stages of the waste processing system. The sampling system enables the user to obtain test samples of the processed waste product.
In yet another embodiment, the first and second agitation systems of the first and second mixing tank systems comprise a gear box, at least one motor and a plurality of blades. In still yet another embodiment, the first and second separation system comprises at least one separation device having at least one screen or a plurality of screens with varying screen mesh sizes. The screen mesh sizes is dependent on the size of the waste particles being processed. The separation device can include, but is not limited to, vibrating screens such as shale shakers. In yet a further embodiment, the slurry tank system can comprise at least one slurry tank wherein a shearing system is situated. The shearing system of the slurry tank system can comprise a gear box, at least one motor, a plurality of blades, a shearing mixer, and gun lines.
In one embodiment, the waste processing system further comprises a plurality of conduits for connecting the first mixing tank system, the first separation system, the slurry tank system, the second separation system and the second mixing tank system.
In another embodiment, the system of the present invention can comprise a pump system from pumping waste through the waste processing system. The pump syste

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Waste processing system and related methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Waste processing system and related methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Waste processing system and related methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2613430

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.