Drying and gas or vapor contact with solids – Apparatus – Rotary drums or receptacles
Reexamination Certificate
1999-12-15
2001-08-14
Wilson, Pamela (Department: 3749)
Drying and gas or vapor contact with solids
Apparatus
Rotary drums or receptacles
C034S599000, C034S063000, C034S090000, C034S092000, C034S215000, C068S019200, C068S020000, C068S214000
Reexamination Certificate
active
06272770
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a combination apparatus for both washing and drying articles, such as clothing. More particularly, the invention relates to such a combined apparatus utilizing pressures below atmospheric and low temperature washing and rinsing fluids.
BACKGROUND OF THE INVENTION
Many clothes are sensitive to moderate or higher mechanical agitation and hot air drying, such that they cannot be washed in a conventional home washer or dried in a convention home dryer. Thus, conventional wisdom generally negates the use of water as a solvent for dry-clean only garments because of the shrinkage associated with conventional washing and drying machines. However, the problem with shrinkage is not the result of the water, but instead is the result of the mechanical action that takes place during normal washing machine cycles and of over heating of the clothing fibers during conventional drying machine cycles. Typical dryers expose garments to air temperatures in excess of 300° F. Typically fabrics start to breakdown at temperatures above 140° F. This fabric breakdown is the lint that is collected in every dryer.
For example, wool may be washed safely in cold water with mild agitation by hand, and then dried by hanging them in ambient air. If wool is exposed to the mechanical agitation of a conventional washer and the drying temperatures of a conventional dryer, it would be irrevocably damaged by mechanical impact and shrinkage. As a result, clothes made of wool or other delicate fibers are dry cleaned by immersion in non-polar hydrocarbon solvents to remove contaminants and are subsequently dried at temperatures that may be lower than the boiling point of water at atmospheric pressure. However, dry cleaning is expensive and hydrocarbon vapors resulting from the drying process may form explosive mixtures with air and are dangerous to personnel and to the environment.
In addition, conventional hot air dryers are inefficient because they do not transfer heat directly from the heat source to the water retained by the clothing. Instead, it is necessary to first heat the air to a relatively high temperature, and then use the hot air to heat the clothing and the walls and internal parts of the dryer, which then transfer the heat to the retained water to vaporize it. In addition, a lot of the heat input is lost in the hot air stream that leaves the drying chamber to transport away the resulting water vapor.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to clean dry-clean only garments and other delicate articles by utilizing water at low temperatures and with low mechanical agitation in both the washing process and the drying process, and to carry out both of these processes in the same vessel.
Another object of the invention is to provide a low temperature washer and dryer that virtually eliminates garment shrinkage associated with mechanical tumbling action during washing and drying, prevents the exposure of delicate garments to the high temperatures associated with hot air flow drying, thus prolonging the garment life, and carries out this washing and drying in a single chamber.
To accomplish this and other objects of the invention, a single washer/dryer vessel having a rotary tumbler therein is supplied with a cold liquid for one or more washing cycles, and is connected to a vacuum system during one or more drying cycles to remove the liquid from the washed articles at the low vaporization temperature achieved with the vacuum. A gentle tumbling action is provided intermittently during both the washing and drying cycles. Although, the articles are referred to below as clothing, the combined washing and drying apparatus may be used to clean other types of articles. While other polar liquids also may be used, the cleaning liquid is preferably water and may be city tap water, carbonated water, ozonated water or a combination thereof. Additives may also be injected into the water, such as detergents, sizing, fragrances and the like.
The combined washer/dryer apparatus may be connected to an existing water supply, and may include a chiller (heat exchanger) to provide cold water for one or more wash cycles. The chiller preferably provides cold water at a temperature in the range of 33° F. to 60° F. After the wash or rinse water is drained from the vessel, water retained by the articles may be heated, preferably directly, to facilitate the drying process. During the washing and drying cycles, the water temperature preferably does not exceed 130° F., more preferably 120° F.
The vacuum system connected to the washer/dryer vessel includes a vacuum pump, and a portion of the cold water from the chiller is preferably supplied to water cooled seals of the vacuum pump, which may be a liquid ring vacuum pump, to minimize water vaporization in and around the seals under the reduced pressure provided by the vacuum pump. An orifice plate may be used to control the flow of cold water to the vacuum pump seals.
A sediment filter may be placed in the water line to filter out any rust, dirt, or other contaminants that might otherwise enter the wash water and contaminant the clothes. A water softening device also may be placed in the water line if the water supply provides hard water, since hard water generally results in poor cleaning performance. Sediment filtration and water softening also increase the effectiveness of any detergent used by greatly reducing the interaction of any mineral salts with the detergent to form unwanted insoluble residues (soap scum).
The cleaning performance of the water also may be enhanced by using carbonated or ozonated water or some combination thereof. Ozonated water is an option to avoid the use of conventional chlorine bleach (sodium hypochlorite). Ozonated water uses Ozone (O
3
) as the oxidizing agent instead of the Sodium Hypochlorite (NaOCl). Using Ozone eliminates the possibility of any excess Chlorine being released to the environment. Any excess Ozone quickly dissipates and forms regular Oxygen (O
2
). Chilling the wash water also enhances the longevity of the Ozone as a bleach. In regular warm or hot water, the Ozone would quickly dissipate and become regular oxygen before acting on the garments. Cold water washing also adds the benefit of reduced utility costs. Carbonated water is an option to introduce CO
2
into the wash water. The CO
2
acts as a wetting agent allowing the water to reach garment stains that are not normally accessible by untreated water. The carbonic acid formed by the CO
2
in carbonated water also combines with any mineral salts that may be in the water or in the clothing to form sodium carbonate, a known cleaning agent. A detergent or surfactant may be injected into the water before or after it is introduced into the washer/dryer vessel. Other additives may also be injected such as sizing and fragrances.
A water pump may be provided to supplement city water pressure and for draining the vessel between wash and rinse cycles and between the last wash or rinse cycle and the first drying cycle. The amount of water pumped to the washer/dryer vessel depends on the water level appropriate for the amount of clothes loaded inside. The detergents and other additives, if any, are specifically designed for washing with cold water and may be added to the vessel either in admixture with the fill water or separately.
The liquid level may be controlled by a liquid level transmitter on the washer/dryer vessel or may be controlled using a load cell. A liquid level transmitter will control the amount of water based on the actual height of water within the vessel. The load cell may be used to fill the vessel based on the weight of water introduced. For example, if the operator wishes to use exactly 15 gallons of water per wash load (detergents may be based on a per gallon of water basis), that water load can be programmed in and the load cell will initiate a signal to shut off the incoming water supply once that water load is reached. At room temperature, water weighs approximately 8.3 lbs. per gallon. S
Lerette Ricky D.
Slutsky Dennis
American Dryer Corporation
Connolly Bove Lodge & Hutz
Wilson Pamela
LandOfFree
Washer/dryer combination with cold water and vacuum does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Washer/dryer combination with cold water and vacuum, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Washer/dryer combination with cold water and vacuum will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2549124