Warhead with aligned projectiles

Ammunition and explosives – Shells – Shrapnel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S491000, C102S492000, C102S494000, C102S496000, C102S497000

Reexamination Certificate

active

06598534

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to improvements in kinetic energy rod warheads.
BACKGROUND OF THE INVENTION
Destroying missiles, aircraft, re-entry vehicles and other targets falls into three primary classifications: “hit-to-kill” vehicles, blast fragmentation warheads, and kinetic energy rod warheads.
“Hit-to-kill” vehicles are typically launched into a position proximate a re-entry vehicle or other target via a missile such as the Patriot, Trident or Mx missile. The kill vehicle is navigable and designed to strike the re-entry vehicle to render it inoperable. Countermeasures, however, can be used to avoid the “hit-to-kill” vehicle. Moreover, biological warfare bomblets and chemical warfare submunition payloads are carried by some threats and one or more of these bomblets or chemical submunition payloads can survive and cause heavy casualties even if the “hit-to-kill” vehicle accurately strikes the target.
Blast fragmentation type warheads are designed to be carried by existing missiles. Blast fragmentation type warheads, unlike “hit-to-kill” vehicles, are not navigable. Instead, when the missile carrier reaches a position close to an enemy missile or other target, a pre-made band of metal on the warhead is detonated and the pieces of metal are accelerated with high velocity and strike the target. The fragments, however, are not always effective at destroying the target and, again, biological bomblets and/or chemical submunition payloads survive and cause heavy casualties.
The textbook by the inventor hereof, R. Lloyd, “Conventional Warhead Systems Physics and Engineering Design,” Progress in Astronautics and Aeronautics (AIAA) Book Series, Vol. 179, ISBN 1-56347-255-4, 1998, incorporated herein by this reference, provides additional details concerning “hit-to-kill” vehicles and blast fragmentation type warheads. Chapter 5 of that textbook, proposes a kinetic energy rod warhead.
The two primary advantages of a kinetic energy rod warheads is that 1) it does not rely on precise navigation as is the case with “hit-to-kill” vehicles and 2) it provides better penetration then blast fragmentation type warheads.
To date, however, kinetic energy rod warheads have not been widely accepted nor have they yet been deployed or fully designed. The primary components associated with a theoretical kinetic energy rod warhead is a hull, a projectile core or bay in the hull including a number of individual lengthy cylindrical projectiles, and an explosive charge in the hull about the projectile bay with sympthic explosive shields. When the explosive charge is detonated, the projectiles are deployed.
The cylindrical shaped projectiles, however, may tend to break and/or tumble in their deployment. Still other projectiles may approach the target at such a high oblique angle that they do not effectively penetrate the target. See “Aligned Rod Lethality Enhanced Concept for Kill Vehicles,” R. Lloyd “Aligned Rod Lethality Enhancement Concept For Kill Vehicles” 10
th
AIAA/BMDD TECHNOLOGY CONF., July 23-26, Williamsburg, Va., 2001 incorporated herein by this reference.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide an improved kinetic energy rod warhead.
It is a further object of this invention to provide a higher lethality kinetic energy rod warhead.
It is a further object of this invention to provide a kinetic energy rod warhead with structure therein which aligns the projectiles when they are deployed.
It is a further object of this invention to provide such a kinetic energy rod warhead which is capable of selectively directing the projectiles at a target.
It is a further object of this invention to provide such a kinetic energy rod warhead which prevents the projectiles from breaking when they are deployed.
It is a further object of this invention to provide such a kinetic energy rod warhead which prevents the projectiles from tumbling when they are deployed.
It is a further object of this invention to provide such a kinetic energy rod warhead which insures the projectiles approach the target at a better penetration angle.
It is a further object of this invention to provide such a kinetic energy rod warhead which can be deployed as part of a missile or as part of a “hit-to-kill” vehicle.
It is a further object of this invention to provide such a kinetic energy rod warhead with projectile shapes which have a better chance of penetrating a target.
It is a further object of this invention to provide such a kinetic energy rod warhead with projectile shapes which can be packed more densely.
It is a further object of this invention to provide such a kinetic energy rod warhead which has a better chance of destroying all of the bomblets and chemical submunition payloads of a target to thereby better prevent casualties.
The invention results from the realization that a higher lethality kinetic energy rod warhead can be effected by the inclusion of means for angling the individual projectiles when they are deployed to prevent the projectiles from tumbling and to provide a better penetration angle; by selectively directing the projectiles at the target, and also by incorporating special shaped projectiles.
This invention features a kinetic energy rod warhead with aligned projectiles. The warhead comprises a hull, a projectile core in the hull including a plurality of individual projectiles, an explosive charge in the hull about the core, and means for aligning the individual projectiles when the explosive charge deploys the projectiles.
In one example, the means for aligning the projectiles includes a plurality of detonators spaced along the explosive charge configured to prevent sweeping shock waves at the interface of the projectile core and the explosive charge to prevent tumbling of the projectiles. In another example the means for aligning includes a foam body in the core with orifices therein, the projectiles disposed in the orifices of the body. In still another example, the means for aligning includes at least one flux compression generator which generates an alignment field to align the projectiles. Typically, there are two flux compression generators, one on each end of the projectile core. Each such flux compression generator includes a magnetic core element, a number of coils about the magnetic core element, and an explosive for imploding the magnetic core element.
The hull is usually either the skin of a missile or a portion of a “hit-to-kill” vehicle. In most embodiments the explosive charge is disposed outside the core. But, in one example, the explosive charge is disposed inside the core. A buffer material such as foam may be disposed between the core and the explosive charge.
The projectiles are typically lengthy metallic members made of tungsten, for example. In one example the projectiles have a cylindrical cross section and flat ends. In the preferred embodiment, however, the projectiles have a non-cylindrical cross section: a star-shaped cross section or a cruciform cross section. Preferably, the projectiles have pointed noses or wedge-shaped noses.
Shields may also be located between each explosive charge section extending between the hull and the projectile core. The shields are typically made of a composite material, in one example, steel sandwiched between lexan layers. In one example, the projectile core is divided into a plurality of bays. Also, the explosive charge is divided into a plurality of sections and there is at least one detonator per section for selectively detonating the charge sections to aim the projectiles in a specific direction and to control the spread pattern of the projectiles. Each explosive charge section is preferably wedged-shaped having a proximal surface abutting the projectile core and a distal surface. The distal surface is typically tapered to reduce weight. In most embodiments, the detonators are chip slappers.
One kinetic energy rod warhead with aligned projectiles in accordance with this includes a hull, a projectile core in the hull including a plurality of individual projectiles, an explosive charge in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Warhead with aligned projectiles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Warhead with aligned projectiles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Warhead with aligned projectiles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3032493

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.