Walk-through human/machine interface for industrial control

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Having operator control interface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S096000, C434S072000

Reexamination Certificate

active

06282455

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to industrial control systems and, in particular, to a human/machine interface for the programming and monitoring of control programs used for the control of factories and the like.
Industrial controllers such as those described in U.S. Pat. Nos. 3,810,118; 3,942,158; 4,165,534; and 4,442,504 are high-speed computers that may be connected to industrial equipment, such as automated assembly lines or machine tools, to operate such equipment in accordance with a stored control program. The stored program includes instructions, which when executed, examine the condition of selected inputs to the controller from sensing devices on the controlled equipment, and energize or de-energize selected actuators or outputs from the controller to operate devices on the controlled equipment.
Inputs to the industrial controller may be discrete binary signals, such as those from switches, which may detect limits of process variables such as motion, temperature, time, or other quantities, or the inputs may be analog measures of process variables which are generally then converted to digital words for processing, or the inputs may be multi-variable information.
Similarly, the outputs of the industrial controller may be either discrete binary signals as produced, typically, by mechanical or solid state relays; analog outputs produced by means of a digital to analog converter; or multi-variable commands. Some of the inputs and outputs to the centralized controller may be remotely located and connected to the controller by means of a digital communications link. Typically, the network connects the controller with a remote I/O rack at which a number of inputs and outputs are clustered.
Current programming tools may display a view of the instructions of the control program as graphical elements (such as relay coils and contacts or function blocks) to make the control program easier to understand. Certain instructions may include captions indicating the state of their data or a view of the data may be displayed in table form. Animated two-dimensional representations of machines, including for example, pumps or motors or reaction vessels, have been used to provide a view of certain process variables such as “on” or “off” states or liquid level or temperature.
Present generations of industrial controllers may be extremely complex with thousands of control points distributed over a factory having dozens of machines coordinated through the operation of the control program. Unlike conventional computer programs of equal complexity, the operation of the control program is highly dependent on intervening real-time physical processes (the operation of the machines of the factory). While the state of this controlled equipment is largely defined by its input and output data, viewing and understanding this data in the context of the control program is difficult. Further, each of the controlled machines normally includes some processing capability so the data to the machine may not directly represent its state. To the extent that the control program is divided among a central processor and machines themselves, gaining a complete understanding of the control process as is necessary for design and monitoring of the control process is difficult.
Current limitations in representing large control programs and its associated data creates an effective limit to the complexity of control systems even as larger control structures coordinating the operations of larger systems are demanded. What is needed is a way to integrate views of large and possibly distributed control programs, their associated control data and the actual physical processes in a logical and intuitive manner.
SUMMARY OF THE INVENTION
The present invention creates an intuitive multi-viewed representation of a control system using the paradigm of the factory floor. Software “objects” are created representing the machines, their status, their programming, and their data each having a defined visual representation and three-dimensional spatial coordinate. In this way, relevant portions of the control program and data may be associated with a particular machine using the mnemonic of physical location.
These spatial “objects” may also serve as “containers” allowing certain objects to be placed within other objects in nested configuration providing yet another dimension of organization.
Specifically, the present invention provides a human/machine interface for use with an industrial control system including at least one electronic computer controlling the operation of an industrial process through the use of a stored program. The stored program receives data from the industrial process in the form of control inputs and provides data to the industrial process in the form of control outputs. The industrial process includes a plurality of machines operating in a factory and the industrial control system communicates with the machines over a network. The invention includes a visual display and a multi-dimensional input device (such as a mouse) communicating with a computer on the network. The computer executes an interface program to provide a three-dimensional representation of a virtual factory with images of the machines dispersed in three-dimensions within the virtual factory and images of portions of the control program associated with the control of the given machine linked to the image of the given machine. The program responds to inputs from the multi-dimensional input device to change the viewpoint allowing the user viewing the visual display and operating the multi-dimensional input device to obtain the perception of moving through the virtual factory.
Thus, it is one object of the invention to provide an intuitive framework for organizing and displaying the data and program of an industrial control system. The framework of spatially defined objects dispersed in three-dimensions is easily understood by human operators.
The images displayed may include an image of the data and the computer may further execute the interface program to animate the images in response to signals on the electrical network to depict operation of the industrial process. The type of animation may include the state of operation of a machine represented by the image, the values of data used by the machine represented by the image, a point of execution in the portion of the control program represented by the image; or a flow of data between machines.
It is thus another object of the invention to integrate a view of control data and machine state into the interface of the present invention as physical objects.
The interface program executed on the computer may link images by placing images of program portions, data or machine state visually within the images of the machines.
Thus, it is yet another object of the invention to allow for a visual parsing of an extremely complex control program among controlled devices. Collecting objects to be contained within its machine simplifies the overwhelming complexity of large industrial control programs.
The interface program executed on the computer may respond to input from the multidimensional input device to allow the user to select images and a selected image may be moved by further input from the multidimensional input device to change the linking between images of portions of the control program and images of machines.
It is another object of the invention to provide a powerful human/machine interface making use of the paradigm of object oriented programming. By representing software objects as tangible three-dimensional objects that may be moved around a virtual factory, use and reuse of software objects under the paradigm of object oriented programming is made immediate and clearer.
The foregoing and other objects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part hereof and in which there is shown by way of illustration, a preferred embodiment of the invention. Such emb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Walk-through human/machine interface for industrial control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Walk-through human/machine interface for industrial control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Walk-through human/machine interface for industrial control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2479770

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.