Wakeup and safety circuits

Electricity: electrical systems and devices – Control circuits for electromagnetic devices – For relays or solenoids

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S320000, C713S323000, C340S003400, C340S010330

Reexamination Certificate

active

06590758

ABSTRACT:

BACKGROUND OF INVENTION
There exists a need in many applications for a wakeup circuit to allow the remote initiation of power and control to a “dormant” accessory of a system without demanding from the user a separate step of system power initiation. There exists a further need to provide such a circuit that may operate without demanding a current draw associated with leaving the “dormant” system or accessory in a state of powered readiness or in a state of reduced power usage wherein a small current draw is maintained. There also exists a need in many applications for a safety circuit that is designed to provide a method for terminating the supply of power to the system or system accessories in the event that a microprocessor or other control unit fails, or in the event that a microprocessor or control unit loses contact with a remote accessory.
In passenger vehicles and especially in motor homes, luxury coaches, and recreational vehicles, the typical patterns of use involve periods of driving separated by extended periods of parked or stationary usage or extended periods of storage. In such vehicles, it is common for there to exist a large number of electrically powered or assisted accessories ranging from cooking amenities such as microwave ovens and refrigerators, to basic utilities such as lights, to entertainment equipment such as stereos and televisions, to starter engines for generators, etc. Further, it has become popular to provide powered, extendable or expandable rooms in such vehicles. Also, there have been introduced various power-controlled doors, steps and other slideable or extendible panels. Extendible rooms, for example, typically comprise a frame that is moveable between a retracted position, wherein a wall of the frame serves as an outer wall of the coach, to an extended position wherein the frame extends outwardly from the outer wall of the coach to serve as a sitting space, storage space, or other area convenient and appropriate for the chosen application. Numerous other power-controlled amenities or features are common including leveling systems or jacks to stabilize the vehicle when parked, and slide-out mechanical bays that provide easy access for maintenance and repairs.
In recreational vehicles, as in passenger vehicles, it is known to provide, through a separate power control panel, or more commonly through the ignition switch, a means for providing power to only select systems or subsystems within the vehicle. This practice is commonplace in passenger vehicles and light trucks wherein the radio, power windows, and other accessories may be provided with power by turning the ignition switch to an “accessory” (or other appropriately named) setting that does not provide power, for example, to the starter engine, alarms, or other various non-selected systems. In this fashion, it is possible to have vehicle accessory systems that do not draw a current when they are not in use. However, as previously noted, it is necessary to supply power to these systems before they are placed in a state of readiness for use. Further, it is necessary to group these systems for shared use of a dedicated power switch or it is necessary to provide a plurality of power switches for the selected items.
In recreational vehicles which are commonly viewed as luxury items and which, of course, serve as homes for snowbirds, travelers, and professionals who must tour on a regular basis, it is desirable to provide maximum convenience. Given the size and the nature of use of such vehicles, operation of accessories frequently is desired when the operator is located remotely from the driver's seat, for example, in the rear of the vehicle interior, at other spaces in the vehicle interior, or at locations on the exterior of the vehicle (if, for example, powered doors, or slide-out mechanical bays are accessed from the vehicle exterior). There is therefore a need to provide for convenient operation of accessories from the remote location. Given the length of periods during which such vehicles are parked or stored, there is also a need to conserve energy to prevent batteries from becoming drained. Therefore, the need to provide for convenient operation of accessories from a remote location is complicated by the need to provide a system that draws little or no current when in a dormant or waiting state.
The prior art includes various wakeup circuits wherein a system is provided with a standby or sleep mode in addition to a normal operating mode. An example from the area of vehicle systems is U.S. Pat. No. 5,216,674. As disclosed in the '674 patent, it is known to provide a Controlled Area Network (CAN) circuit system in vehicle systems. In general terms, a CAN system or interface system connects via bus lines the numerous components, subsystems, and systems that form the substations of the CAN. CAN systems typically employ two communication lines for the movement of signals between a central control module and remotely distributed input/output modules. The '674 patent discloses a particular wakeup circuit for a CAN vehicle system having a low power usage or low current draw sleep mode. Specifically, the wakeup circuit of the '674 patent is described as having been designed to be operable even in the event that one of the two signal lines fails due to short circuit to ground or due to disturbance in voltage supply. However, at all times a fault detection current draw is present in the circuit of the '674 patent.
In addition to the need for wakeup functionality, there also exists a need for an improved safety circuit designed to remove power to networked accessories in the event that the central control module or microprocessor fails or loses contact with an accessory. In many applications, for example, in the case of slide-out rooms in recreational vehicles or coaches, it is beneficial to provide as a safety feature a means for suspending power supplied to the slide out-room if power failure, communication failure, or microprocessor failure occurs. Therefore, the presently described invention includes circuits having wakeup functionality and circuits having safety or power suspension functionality. Although described with reference to vehicle-based application, it will be understood by those of ordinary skill in the art that the present invention is widely applicable beyond the field of vehicles and in many systems. The invention is of particular value in systems wherein energy conservation and/or safety-based power termination are important design considerations. Examples of applications for such systems are legion as the present invention relates broadly to the provision of the cited functionality.
SUMMARY OF INVENTION
The present invention relates generally to a wakeup circuit that allows remote initiation of power and control to a “dormant” accessory or system without demanding that system power be initiated in a separate step. The present invention also relates to a wakeup circuit that does not demand a quiescent or latent current draw by the system when in its dormant state. The present invention relates also to a safety circuit and to a safety circuit in combination with the wakeup circuit. The exemplary embodiment described herein relates specifically to a CAN type accessory or module system. However, the invention relates generally to other networked applications or network protocols and is not dependent upon the use of a CAN protocol.
In the wakeup circuit for providing power and control to a system accessory when that system accessory lies in a dormant state that may be characterized by zero current draw, a switch is provided at an operator's panel or control panel for an accessory. Actuation of the accessory control switch provides a ground or reference voltage that, in effect, applies a ground “signal” to a wakeup wire. This ground connection is provided to a central control module (“CCM”) and the voltage difference exposed to the CCM from a power source and the ground causes current to flow to the CCM and “wake-up” the CCM. In turn, the networked

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Wakeup and safety circuits does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Wakeup and safety circuits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wakeup and safety circuits will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3096708

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.