Vortex induced vibration suppression device and method

Hydraulic and earth engineering – Marine structure or fabrication thereof – Structure protection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C405S211000, C114S243000

Reexamination Certificate

active

06695540

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to vortex induced vibration suppression and more particularly to an improved apparatus for suppressing vortex induced vibrations in vertical risers of oil and gas well drilling platforms and production platforms. Even more particularly, the present invention relates to an improved vortex induced vibration suppression apparatus, also known as a strake, wherein the improved apparatus includes an elongated body of flexible polymeric material such as polyurethane, the body having a wall surrounding a continuous open-ended bore, a plurality of helical vanes provided on the body, (preferably integral therewith) that extend along the length of the body and a longitudinal slot that extends through the wall enabling the body to be separated such as during placement upon a pipe, riser or pipeline.
2. General Background of the Invention
Vortex induced vibration suppressors are devices that have been used commercially to prevent vortex induced vibration. It has been stated that risers such as those associated with TLP type platforms suffer from vortex induced vibration or “VIV”. Floatable and tension leg platform (TLP) risers suffer from vibration induced vortex caused by ocean currents, for example. VIV can be an acute problem in deep water drilling operations. As the current flows around an unsupported pipe such as a pipeline riser, it creates vortices on the leeward side of the pipe. Vortices produce minute pressure fluctuations that create vibrations on the leeward side of the pipe. When these vortices break away from the pipe, they set up vibrations which will dynamically excite the riser and cause the pipe to fail prematurely. Strong currents increase the amount of vortex induced vibration (VIV).
Presently, there are a number of commercially available vortex induced vibration suppressors. One such product is available from Mark Tool Company of Lafayette, La. Another commercially available vortex induced vibration suppressor is available from CRP Marine Products of England. Another commercially available vortex induced vibration suppressor or “strake” system is being commercialized by Dunlaw of Aberdine, Scotland. Another device that is commercially available and that suppresses vortex induced vibration is sold under the mark Uraduct® VIV.
One of the problems of placing a vortex induced vibration suppressor on an oilfield riser pipe such as the riser associated with a deep water oil and gas well drilling or production platform is the problem of installing or placing the strake. This problem can be solved by using an underwater diver or divers. However, such a procedure is dangerous and very costly. Some VIV devices have multiple parts that limit overall structural strength.
BRIEF SUMMARY OF THE INVENTION
The present invention provides an improved method and apparatus for solving the problem of vortex induced vibration by providing a suppression apparatus of improved construction that features an elongated body of flexible polymeric material (for example polyurethane), the body having a wall surrounding a continuous, open-ended bore.
A plurality of helical vanes are provided on the body, extending along the length thereof.
A longitudinal slot extends through the wall, enabling the body to be separated to afford access to the bore (such as during placement on a pipe or riser). In another embodiment, the apparatus can be cast in place on a pipe joint or cast as a one piece strake that is slipped over a pipe and then glued, eliminating the slot and bolted connection.
In the preferred embodiment, the entire elongated body and vanes are of a integrally formed, preferably cast or molded polymeric material (for example, polyurethane). This construction enables the entire elongated body to be flexed as portions of the body are separated apart at the slot.
In the preferred embodiment, the slot extends along one of the vanes, separating the vane into first and second vane portions, each having a surface that abuts a corresponding surface of the other vane portion upon assembly.
The slot is preferably a helically shaped slot that tracks the path of the vane.
A removable connection can hold the body together at the slot. In the preferred embodiment, this removable connection is in the nature of a bolted connection or connections that bolt first and second vane portions together.
This removable connection is preferably comprised of a plurality of regularly spaced apart, bolted connections.
In the preferred embodiment, the slot separates one of the vanes into first and second longitudinally extending vane sections, each having a flat mating surface (or offset for aiding alignment), wherein the flat mating surfaces are engaged, the bolted connections can be perfected to hold them together.
In another embodiment, the present invention provides an improved vortex induced vibration suppression apparatus that features the elongated body and helical vanes with a longitudinal slot that extends through the wall at a vane for enabling the body to be separated to afford access to the bore.
In an alternate embodiment, a spacer is removably attachable to the body, the spacer including a rounded outer surface that enable the spacer and body to be rolled such as during handling upon the deck of a ship or barge. The spacer provides an elongated bore that is shaped to fit the body and its helical vanes.
The present invention provides an improved method of installing a riser having one or more vortex induced vibration suppression devices thereon. The method includes first making up the riser section on a pipeline lay barge that provides a stinger. The vortex induced vibration device or devices is attached to the pipeline on the lay barge. In this fashion, the riser and attached vortex induced vibration suppression devices can be lowered to the seabed by first passing the riser and attached vortex induced vibration suppression devices over the stinger part of the barge. With the present invention, the improved construction of the vortex induced vibration suppression device enables the apparatus to be lowered over a stinger of a lay barge to the ocean floor.


REFERENCES:
patent: 3410096 (1968-11-01), Schuh
patent: 3572041 (1971-03-01), Graaf
patent: 4398487 (1983-08-01), Ortloff et al.
patent: 4439070 (1984-03-01), Dimmick
patent: 4474129 (1984-10-01), Watkins et al.
patent: 4657116 (1987-04-01), Gardner et al.
patent: 5410979 (1995-05-01), Allen et al.
patent: 5421413 (1995-06-01), Allen et al.
patent: 5460463 (1995-10-01), Smith
patent: 5722340 (1998-03-01), Sweetman
patent: 5738034 (1998-04-01), Wolff et al.
patent: 6019549 (2000-02-01), Blair et al.
patent: 6048136 (2000-04-01), Denison et al.
patent: 6062769 (2000-05-01), Cuningham
patent: 6067922 (2000-05-01), Denison et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vortex induced vibration suppression device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vortex induced vibration suppression device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vortex induced vibration suppression device and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335623

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.