Pipes and tubular conduits – With flow regulators and/or baffles – Flow facilitating
Reexamination Certificate
2003-06-14
2004-03-09
Hook, James (Department: 3752)
Pipes and tubular conduits
With flow regulators and/or baffles
Flow facilitating
C138S037000, C366S336000, C366S338000, C123S306000, C123S590000
Reexamination Certificate
active
06701964
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to internal combustion engines, and more particularly to an airfoil installed in the fuel injector air intake hose to create a vortex for increasing air to the fuel-air mixture to make the engine more fuel-efficient.
2. Description of the Prior Art
A number of devices have been developed to increase fuel efficiency in internal combustion engines by mixing more air with the fuel. Often this is done by creating a spinning effect in the incoming airflow to mix more air with the fuel and increase fuel efficiency by 15-25% while also reducing air pollution by burning the fuel cleaner with more of the fuel burned, thereby giving off fewer pollutants.
Aircraft wings are known to produce a wake turbulence in the form of a vortex at the wing tips sometimes producing a 30-40% drag on the wing. Wings develop lift by having a shorter airflow distance under the wing over a relatively straight surface versus a longer airflow over the convex curvature of the top of the wing thereby creating lift due to the pressure difference. The intermingling of the two airstreams coming together at different angles produces the turbulent vortex.
In many gasoline engines, fuel is supplied to the intake manifold of the engine by way of a carburetor or fuel injector having an air intake. During operation of the engine, air is drawn in through the carburetor over a layer of gasoline sitting in a bowl within the carburetor. The gasoline in the bowl is maintained at a certain level, which is unrelated to engine displacement and power output. Even with optimum carburetion, some relatively large droplets or particles of gasoline or other fuel become mixed with the fuel vapor being drawn into the engine cylinders via the engine intake manifold. During the combustion process, these droplets do not burn completely. Therefore the fuel comprising those droplets does not contribute as much as it should to engine output power and it is expelled from the combustion chambers, appearing in the engine exhaust as unburned hydrocarbons or other atmospheric pollutants.
Various apparatus have been proposed heretofore to improve the fuel efficiency of internal combustion engines. However, these prior devices have tended to be rather complicated and to require active control by the vehicle operator.
U.S. Pat. No. 4,310,028, issued Jan. 12, 1982 to Kennedy, describes the method and apparatus for increasing the fluid throughput of a conduit. The fluid throughput of a conduit is increased without increasing the power requirements or the size of the conduit by affixing to the inner surface of the conduit at least one airfoil located with its leading edge facing into the flow substantially at the beginning of rectilinear flow. The airfoil advantageously has a body portion, a head portion, and a tail portion wherein the body portion has upper and lower planar surfaces defined by substantially parallel planes, side portions defined by substantially parallel side planes which are substantially normal to the upper and lower parallel planes, the head portion has a bulbous portion extending substantially below the lower parallel plane and the tail portion extends substantially below the lower parallel planes but not as far below as the bulbous portion.
U.S. Pat. No. 5,140,969, issued Aug. 25, 1992 to Barclay, provides an automatic fuel saver for a vehicle engine that comprises a cyclonic turbulence chamber for connection between the engine intake manifold and the carburetor that supplies a fuel-air stream to the manifold. An air scoop is positioned at the front of the vehicle to collect supplemental air due to the forward motion of the vehicle. The supplemental air is conducted by a conduit to the turbulence chamber where it is introduced tangentially into the chamber and mixes cyclonically with the fuel-air stream being drawn into the engine from the carburetor, thereby providing supplemental oxygen to the engine in an amount which varies directly with the forward speed of the vehicle and the engine power demand.
U.S. Pat. No. 6,550,446, issued Apr. 22, 2003 to Robley, Jr., is for an air intake flow device that manipulates the airflow in an air entry chamber of a positive displacement internal combustion engine. The air intake flow device is comprised of a skirt defining an air flow passageway, multiple vanes extending into the airflow passageway from a first leading edge at the surface of the skirt. The configuration of the vanes direct the airflow into a vortex like configuration which is understood to improve air intake across the intake valve into the combustion chamber and thereby improve oxidation of the fuel. The airflow device is preferably constructed in a fashion so that the installer of the device can readily adapt its configuration by applying hand pressure from a first manufactured configuration to second installation configuration. Thus, the device is suitable for adaptation to various air entry chamber shapes.
U.S. Pat. No. 4,537,173, issued Aug. 27, 1985 to Norris, discloses a fuel distribution system for a multi-cylinder internal combustion engine that includes an intake manifold. The intake manifold has a tubular inlet stack with an inlet including a mounting for a carburetor on the top thereof and a plurality of runner passages extending generally transverse to the bottom of the stack and to intake ports at each cylinder. The manifold includes a housing downstream of the stack providing a freely rotatable mounting for a shaft having a plurality of axial flow turbine blades thereon and a radial flow impeller is also mounted on the shaft, spaced from the turbine blades. The stack has a cylindrical interior wall section closely fitted to the turbine blades, defining therewith a ducted velocity turbine, and beneath the stack the housing surrounds the impeller and is connected to each of the runner passages, whereby all fuel/air mixture passes through the turbine and impeller. Usually the shaft is supported for rotation about a vertical axis, and a diffuser may be provided in the housing, being arranged in a generally horizontal circle surrounding the impeller to direct a flow of fuel/air mixture exciting the impeller radially outward through said runner passages. The impeller includes a surface extending through a curvature of approximately 90.degree. and a plurality of impeller blades projecting from its surface to accept the flow of fuel/air mixture exiting the turbine and to change the direction of such flow while returning energy into such flow.
U.S. Pat. No. 5,662,079, issued Sep. 2, 1997 to Snider, indicates manifold flow turning vanes in internal combustion engines, some of which are an ideal airfoil type. Gas flow pressure losses through fuel charge and exhaust gas flow conduits for internal combustion engines are greatly reduced by turning vanes in conduit flow bends of greater than 9.degree. around an inside radius of less than twice the effective diameter of the conduit. Such turning vanes are preferably given leading edge bevels of about 20.degree. to 24.degree. and trailing edge bevels of 13.degree. to 17.degree., which are substantially centered about an arc radius through the angular center of the flow bend.
U.S. Pat. No. 5,979,395, issued Nov. 9, 1999 to Mallen, illustrates a method for reducing the exhaust pollution emissions in a two-stroke sliding vane internal combustion engine. First, fresh air is inducted into a vane cell, and fuel is injected into the cell at an ultra-lean fuel-air equivalence ratio less than about 0.65. The fuel is injected at a location such that a circumferential distance at mid-cell-height to the stator site at the onset of combustion is at least about 4 times a vane cell height at intake. The ultra-lean fuel-air combination is then compressed and thoroughly premixed prior to combustion to a dimensionless concentration fluctuation fraction below about 0.25. The ultra-lean, thoroughly premixed fuel-air combination is then combusted. The combusted fuel-air combination is purged after an expansion
Hook James
Meeker Donald W.
LandOfFree
Vortex generating airfoil fuel saver does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vortex generating airfoil fuel saver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vortex generating airfoil fuel saver will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3192381