Fluid reaction surfaces (i.e. – impellers) – Rotor having flow confining or deflecting web – shroud or... – Radially extending web or end plate
Reexamination Certificate
2001-03-14
2003-09-16
Look, Edward K. (Department: 3745)
Fluid reaction surfaces (i.e., impellers)
Rotor having flow confining or deflecting web, shroud or...
Radially extending web or end plate
Reexamination Certificate
active
06619922
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a vortex generating apparatus and more particularly to an apparatus that produces a captive vortex capable of attracting and removably adhering one or more solid objects or removably adhering the apparatus itself to a surface. Specifically, improved embodiments are disclosed that allow for operation on both curved and flat surfaces.
BACKGROUND OF THE INVENTION
The use of vortex forces is known in various arts, including the separation of matter from liquid and gas effluent flow streams, the removal of contaminated air from a region and the propulsion of objects. However, vortex forces have not previously been provided in a device capable of attracting itself to and/or removably attract other solid objects, particularly objects that are not flat in nature.
Nagata U.S. Pat. No. 3,968,986 is related to an electromagnetic device capable of attracting surfaces that have non-planar surface configurations. It comprises a magnetic assembly consisting of a plurality of relatively small movable magnetic pole members. In this electromagnetic lifting device, the respective magnetic pole members to be excited electrically are assembled in a manner to permit vertical motion relative to each other, so that the magnetic pole members can accommodate themselves to the configuration, such as concave, convex or curved surface of a ferromagnetic material and move in vertical direction so as to freely contact the surface of the ferromagnetic material, thereby exerting an effective lifting force on the ferromagnetic material. However, the system of Nagata is strictly a static device. It does not allow any type of motion along the surface. Furthermore, electromagnets are heavy, complex and draw significant power, making them inefficient compared to the present invention.
Related to the field of separations, Bielefeldt U.S. Pat. No. 4,801,310 and related U.S. Pat. No. 4,848,991 teach methods of directing particles tangentially using centrifugal forces within a vortex chamber. A mixed fluid flow is directed tangentially into the cylinder of a vortex chamber inclined toward the opposite end of the cylinder. The process is said to separate heavier solid or liquid particles from lighter gas or liquid flow. The lighter fluid flow is directed toward the center of the vortex chamber and is collected with separate suction tubes, while the heavier particles are directed to the outer periphery and along the length of the vortex chamber for collection by a separate apparatus. In this system, the heavier particles are separated by the centrifugal forces created within the vortex chamber separator. A constant stream of fluid passes through a vortex chamber. While the process may attract particles to the periphery of the vortex chamber, they are collected within the chamber and removed with a separate device. This is in stark contrast to the vortex apparatus of the present invention, which uses the vortex forces to attract or suspend objects in a controllable manner.
In addition to the centrifugal forces of vortex apparatuses, low pressure regions created by vortex airflow have been taught which attract fluid streams. For example, Barry U.S. Pat. No. 5,078,880 teaches an apparatus for desalinating water. A vortex generating apparatus consists of a discontinuous cylinder having a cross section of a spiral. When a continuous stream of air is directed toward an inlet opening in the spiral, the air swirls into the interior of the cylinder and creates a spinning tower of air, or a vortex. A water stream is attracted to the area of low pressure at the vortex and travels through the apparatus, with the salt being separated by centrifugal forces. Unlike the present invention, this apparatus is not with the use of large solid objects. It is not capable of attracting and removably adhering objects for disposal, transport, mounting, or otherwise.
Nagai et al U.S. Pat. No. 5,879,040 is directed to a device, preferably for use with a robot, to attract an object having a curved surface. The device comprises a curved surface having planar first and second housings securely coupled to each other by fasteners, and a suction pad made of a synthetic resin material. A flange is sandwiched between the first and second housings, and a bellows is disposed in a hole defined in one of the first and second housings. The bellows are elastically deformable against the curved surface of the workpiece. Again, Nagai et al is a static system. It does not allow any type of translation along the curved surface. Furthermore, the need for a vacuum system (in the preferred embodiment, disposed within a robot) makes the system complex and cumbersome compared to the present invention.
Vortex vents are proposed to remove contaminated air from a defined region in place of conventional vents, where air is extracted from a general area. For example, the Vortex Technology Center at the University of Houston proposes an apparatus that creates a swirling suction flow of air. A swirler is activated in a manner that draws air spirally upward through an exit area above. This swirling motion creates a reverse vertical flow near the axis of the swirler. This is said to be more efficient and convenient than conventional hoods for removing contaminated air from a directed region. However, this apparatus is not capable of attracting and removably adhering objects.
Attempts have also been made to develop thrusters to vertically propel an object using a vortex airflow. For example, the Vortex Technology Center proposes an apparatus which is capable of vertically ascending. This device, described in more detail herein, consists of a chamber header, a cargo area and swirler. At the base of the chamber header is a high pressure input source. Air enters through the high pressure input source to the swirler, which provides angular momentum to the airflow. The airflow is forced out and around the body of the chamber header over diffusers. The lack of air pressure directly above the axis of the swirler creates a low pressure region, which is said to create upward lift.
This apparatus differs from the vortex generating apparatus of the present invention as it is not capable of lifting and holding objects, nor is resistance minimized by limiting overall airflow.
These apparatuses proposed by the Vortex Technology Center (the vortex vent and the vortex thruster) use the pressure differences created by the vortex airflow to provide a directed low pressure region. The devices above describe the “artificial tornado” theory in conjunction with the illustrations presented. However, while they may be similar to a tornado because they use spirally flowing air to create a pressure difference, they do not take advantage of the potential forces that may be generated by emulating the flow of a natural tornado.
A tornado is a strongly rotating column of air, or vortex, generally attached to the base of a thunderstorm cloud and extending to a tip. The pressure in the center of the rotating column is lower than ambient and becomes lower still as the tip of the column approaches and attaches the ground or a solid surface such as a roof. If the vortex or vortices are not connected to the base of a cloud, they are not tornadoes, but rather are termed “gustnadoes”. The devices proposed by the Vortex Technology Center do not use the principles of a connected tornado, but instead resemble an unconnected tornado.
Many devices and methods are used to attract solid objects or particles. A common method is with the use of suction generated by a vacuum. However, the vortex attraction force created by the present invention is distinguished from a typical vacuum impeller system. The operation of an impeller vacuum system is described and contrasted with the present invention in further detail herein. Briefly, a motor driven impeller causes a circular fluid motion within its vanes, whereby the centrifugal force or centripetal acceleration throws fluid out through an exhaust. Pressure is reduced and fluid is drawn into the inlet and through the impelle
Illingworth Lewis
Reinfeld David
Kershteyn Igor
Look Edward K.
Vortex Holding Company
Ward & Olivo
LandOfFree
Vortex attractor for planar and non-planar surfaces does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vortex attractor for planar and non-planar surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vortex attractor for planar and non-planar surfaces will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082729