Dispensing – Supply containers with traps – With trap chamber cutoffs
Reexamination Certificate
1999-06-24
2001-01-09
Recla, Henry J. (Department: 3751)
Dispensing
Supply containers with traps
With trap chamber cutoffs
C222S064000, C222S189090, C222S634000, C222S464500, C366S107000, C141S070000, C141S094000, C141S198000
Reexamination Certificate
active
06170718
ABSTRACT:
FIELD OF THE INVENTION
The subject of the present invention is a device for the batchwise volumetric dosing or metering of lightweight pourable material, especially expanded perlite, comprised of a measurement container with an upper material inlet from a supply or storage silo, a closable lower material outlet communicating with a mixer and a measurement probe which, when the material reaches the desired filling height, closes the upper material inlet.
BACKGROUND OF THE INVENTION
Expanded perlite is increasingly being added in different proportions to various materials, for example for building products and building materials like plasterboard and gypsum/cardboard boards. Since the expanded perlite in general has a bulk density of only 40-80 g/l and serves primarily to make the end product lighter, it usually is metered not by weight but rather by volume. This dosing or metering has been carried out heretofore with the aid of a measuring container into which the material is filled from a storage silo, for example via a conveyor worm. The measurement container has a measurement probe which interrupts the material feed when the desired filling height is reached. This measurement probe is height adjustable so that any desired volume per charge can be established. The measurement container also has a material outlet at its lower end through which the material can be poured into or caused to flow into the mixer.
This type of batchwise volumetric dosing of expanded perlite is relatively inexact and can give rise to the escape of dust which can be removed only by the expensive application of suction.
OBJECT OF THE INVENTION
It is the object of the invention to provide for a more exact batchwise volumetric dosing of lightweight pourable material, especially expanded perlite, in a simple manner which avoids the escape of dust. Preferably all of the operating stages of the device should be controllable.
SUMMARY OF THE INVENTION
This object can be attained with a device in which the measurement container is comprised of two telescopingly interfitted parts which can be displaced relative to one another and which allow for reproducible height adjustment, wherein below or above the maximum filling height an upper closure device is provided and wherein the lower part of the measurement container is flexibly connected with the mixer.
Preferably the measurement container has at its middle region, a greater diameter than at its upper and lower ends. This provides above all a less bulky and more compact construction of the device so that volumes between 500 and 5000 liters, preferably between 1000 and 3000 liters, can be measured out at relatively short time intervals in a reliable, convenient and reproducible manner and then fed to the mixer.
Furthermore, the measurement container preferably has a venting device above the maximum filling height. This venting unit is advantageously equipped with a dust filter so that the air which is driven out upon filling of the measurement container can be discharged without problems and without blowing the dust which can result into the factory or the environment.
Advantageously, the device according to the invention is provided closely above the material outlet with a second measurement probe. This can signal the point in time at which the material has been completely discharged into the mixer so that the lower closure device can be closed again. Only then can the next cycle of filling and measurement begin. In case the material may not flow quickly or completely from the measurement container into the mixer the measurement container has closely above the lower closure device, one or more nozzles whereby air can be blown in. This loosens the material so that it can flow without problems into the mixer. These nozzles can also be connected with the computer and control unit so that they are only turned on when the lower measurement probe indicates an unexpectedly long period of time in which material remains in the measurement container.
The upper measurement probe which indicates the desired filling height can be located in a preferably constricted or narrowing part of the measurement container so that it can provide a precise indication. In the case in which a very exact metering is to be carried out the upper measurement probe can also be provided above the upper closure unit. This closure unit must then be formed as a slider which can be slid through the layer of material which has already been filled into the measurement container. Instead of sliders, especially flaps and rotary flaps can be used as closure devices which can be used over long periods in a problem-free manner and easily are controlled by measurement signals of the probe.
Since the measurement container is constituted of two telescopingly interfitted parts which are displaced relative to one another and which can be adjusted vertically in a reproducible manner, the desired volume can be set in a very simple manner. The height adjustability is possible for example via toothed racks. This construction can be very robust and can operate in a trouble free manner. It allows the desired filling height to be reproducibly set in a simple way. The desired volumetric amount can be simply determined by calibration curves and can be programmed into the computer and control unit.
In order to compensate the height differences of the lower part of the measuring container at different volumetric amounts, this part of the measurement container is flexibly connected to the mixer. For this purpose either sleeves of corresponding size or flexible rubber hoses are suitable. In principle it is also possible instead of connecting the lower part of the measuring container, to connect the upper part of the measuring container to move up and down, flexibly with the storage silo and the conveyor warm. This, however, requires that not only the upper measurement probe but also the venting duct to be movable up and down. In practice, therefore, the upper part is fixedly mounted and the lower part is configured to be height adjustable so that this part is flexibly connected with the mixer.
REFERENCES:
patent: 3858733 (1975-01-01), Morioka et al.
patent: 4172539 (1979-10-01), Botkin
patent: 4378897 (1983-04-01), Kattleman
patent: 5738153 (1998-04-01), Gerling et al.
Gr{umlaut over (u)}nder Andreas
Ziegler Axel
Dubno Herbert
Maust Timothy L.
Recla Henry J.
Ziegler Axel
LandOfFree
Volumetric batch dosing device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Volumetric batch dosing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Volumetric batch dosing device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2462524