Volume filling mechanical structures for modifying crash...

Land vehicles: bodies and tops – Bodies – Structural detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C293S137000, C293S135000

Reexamination Certificate

active

06702366

ABSTRACT:

TECHNICAL FIELD
The present invention relates to structures used for modifying a vehicle deceleration pulse (crash pulse), and more particularly to mechanical structures which are volumetrically reconfigurable such as to occupy a small volume when in a dormant state and then rapidly expand to a larger volume in a deployed state when needed for providing crash pulse modification.
BACKGROUND OF THE INVENTION
A vehicle, in addition to the inherent crush characteristics of its structure, may have dedicated crash energy management structures. Their function is exclusively to dissipate energy in the event of a crash. Such dedicated structures have predetermined crush characteristics which contribute to the resulting deceleration pulse to which the occupants are subjected.
In the vehicular arts there are two known types of such dedicated crash energy management structures: those which are passive, and those which are active.
An example of a passive dedicated crash energy management structure is an expanded honeycomb celled material, which has been used to a limited degree in certain vehicles.
FIG. 1
exemplifies the process of fabrication of a honeycomb-celled material. A roll
10
of sheet material having a preselected width W is cut to provide a number of substrate sheets
12
, each sheet having a number of closely spaced adhesive strips
14
. The sheets
12
are stacked and the adhesive cured to thereby form a block, referred to as a HOBE® (registered trademark of Hexcel Corporation) block
16
having a thickness T. The HOBE block is then cut into appropriate lengths L to thereby provide HOBE bricks
18
. The HOBE brick is then expanded by the upper and lower faces
20
,
22
thereof being separated away from each other, where during the adhesive strips serve as nodes whereat touching sheets are attached to each other. A fully expanded HOBE brick is composed of a honeycomb celled material
24
having clearly apparent hexagonal cells
26
. The ratio of the original thickness T to the expanded thickness T′ is between 1 to 20 to 1 to 50. An expanded honeycomb celled material provides crash energy management parallel to the cellular axis at the expense of vehicular space that is permanently occupied by this dedicated energy management structure.
Typically, crash energy management structures have a static configuration in which their starting volume is their fixed, operative volume, i.e. they dissipate energy and modify the timing characteristics of the deceleration pulse by being compressed (i.e., crushing or stroking of a piston in a cylinder) from a larger to a smaller volume. Since these passive crash energy management structures occupy a maximum volume in the uncrushed/unstroked, initial state, they inherently occupy vehicular space that must be dedicated for crash energy management—the contraction space being otherwise unstable. Expressed another way, passive crash energy management structures use valuable vehicular space equal to their initial volume which is dedicated exclusively to crash energy management throughout the life of the vehicle even though a crash may never occur, or may occur but once during that time span. This occupied contraction space is not available for other uses, including functions such as vehicle component inspection, servicing and repair. Spaces left open for servicing, repair and operational clearances are thus locations in which passive dedicated crash energy management devices have typically not been used.
Active crash energy management structures have a predetermined size which expands at the time of a crash so as to increase their contribution to crash energy management.
One type of dedicated active crash energy management structure is a stroking device, basically in the form of a piston and cylinder arrangement. Stroking devices have low forces in extension and significantly higher forces in compression (such as an extendable/retractable bumper system) which is, for example, installed at either the fore or aft end of the vehicle and oriented in the anticipated direction of crash induced crush. The rods of such devices would be extended to span the previously empty spaces upon the detection of an imminent crash or an occurring crash (if located ahead of the crush front). This extension could be triggered alternatively by signals from a pre-crash warning system or from crash sensors or be a mechanical response to the crash itself. An example would be a forward extension of the rod due to its inertia under a high G crash pulse. Downsides of such an approach include high mass and limited expansion ratio (1 to 2 rather than the 1 to 20 to 1 to 50 possible with a compressed honeycomb celled material).
Another type of active dedicated crash energy management structure is inflatable airbags or pyrotechnic air cans. Downsides of such systems include low force levels and low ratios of crush force to added mass due to the lack of mechanical rigidity of these systems.
Accordingly, what remains needed in the vehicular arts is a dedicated vehicular crash energy management structure which provides at times other than a crash event open spaces for other uses than crash pulse management, a high level of compression ratio, high crush force, and a low crush force to mass ratio.
SUMMARY OF THE INVENTION
The present invention is a mechanical, active dedicated crash energy management structure for providing modification of crash deceleration pulse (crash pulse), wherein the structure has a dormant (initial) state volume, but then in the event of a crash, timely expands into a much larger deployed volume for providing management of energy of an expectant crash.
The active dedicated crash energy management structure according to the present invention directly addresses the space robbing deficiency of prior art crash energy management structures. It does this specifically by having a small dormant volume (during normal driving conditions) which allows empty space adjacent thereto for operational clearances, serviceability and repair functions, and only assumes a larger deployed volume just prior to, or in response to, a crash.
The principle embodiment of the crash energy management structure according to the present invention is a before expansion honeycomb celled material brick (honeycomb brick) such as for example manufactured by Hexcel Corp. of Pleasanton, Calif., wherein expansion of the honeycomb brick is in a plane transverse to the cellular axis of the cells thereof, and crash crush is intended to be parallel to the cellular axis.
The honeycomb brick occupies anywhere from approximately 1/20th to 1/50th of the volume that it assumes when in it is fully expanded (the expansion ratio) into an expanded honeycombed celled material (expanded honeycomb), depending on the original cell dimensions and wall thicknesses. Honeycomb cell geometries with smaller values of the expansion ratio in general deliver larger crush forces, and the choice of the honeycomb celled material is dependent upon the crush force (stiffness) desired in a particular crash energy management application (i.e., softer or harder metals or composites). Expanded honeycomb has excellent crash energy management capabilities, but only parallel to the cellular axis, as discussed hereinabove.
According to the principal embodiment of the present invention, a honeycomb brick is located adjacent spaces that need to be left open for various reasons, such as exist for example in the engine compartment. The honeycomb brick is placed so that the common cellular axis of its cells is oriented parallel to an envisioned crash axis, i.e., the direction of impact for which it is intended to serve as an energy absorber. A rigid end cap is attached, respectively, to each of the mutually opposed upper and lower end faces of the honeycomb brick (the ends which are perpendicular to the transverse plane and parallel to the crash axis).
In the event of a crash, either an active or passive activation mechanism is provided for moving the end caps away from each other so that the honeycomb brick expands in the transverse p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Volume filling mechanical structures for modifying crash... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Volume filling mechanical structures for modifying crash..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Volume filling mechanical structures for modifying crash... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280466

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.