Furnaces – Refuse incinerator – Rotary drum
Reexamination Certificate
1999-05-03
2001-04-10
Ferensic, Denise L. (Department: 3749)
Furnaces
Refuse incinerator
Rotary drum
C110S259000, C110S242000, C110S203000, C110S204000, C110S216000, C110S226000, C432S067000, C432S072000
Reexamination Certificate
active
06213030
ABSTRACT:
BACKGROUND OF THE INVENTION
a) Field of the Invention
This invention relates to the treatment of volatile contaminants. The invention is particularly suitable for, but not limited to, the removal of contaminants from solids and liquids.
The contaminants may include, but are not limited to, petroleum products (eg. petrol, oils, greases); phenols; coaltar; cyanide; pesticides; PCB's; HCB's, organochlorine pesticides and arsenics.
The treatment of contaminated soils and liquid wastes is a worldwide problem. Often, the contaminated soils or liquids are simply removed and transferred to a toxic waste dump or pond. This does no more than move the problem. For contaminants such as PCB's, the environmental protection authorities around the world specify strict conditions for their disposal in very high temperature incinerators, eg. found in the vessel “Vulcanus”.
b) Description of the Prior Art
International Patent Application No. PCT/AU93/00646 (International Publication No. WO 94/15150) (Robertson) discloses a stationery retort where toxic waste and other contaminants are removed from soil, the soil being agitated and being brought into contact with the retort walls to cause the wastes and contaminants to be desorbed. The retort has proved successful in the removal of toxic waste and contaminants from many types of soil.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide improved methods and apparatus for use in removing volatile contaminants from solids or liquids.
According to one aspect of the present invention there is provided a method for the treatment of volatile material(s) in contaminated material(s) including the steps of:
feeding the contaminated material(s) to a retort assembly which includes a rotatable retort at least partially disposed within a combustion chamber which is heated by heating means;
causing the contaminated material(s) to contact the wall(s) of the retort to cause the volatile material(s) to be given off as gases;
discharging the treated material from the retort;
transferring the gases to an afterburner for combustion; and
returning the combustion gases from the afterburner to the retort assembly to provide assistance in heating the contaminated material(s) being treated in the retort.
According to another aspect of the present invention there is provided apparatus for the treatment of volatile material(s) in contaminated material(s) including a retort assembly which includes a rotatable retort disposed at least partially within a combustion chamber with heating means to indirectly heat the rotatable retort; said rotatable retort include a feed end through which the contaminated material(s) are fed to the retort and a discharge end from which the materials are discharged from the retort; an afterburner; means to transfer the volatile material(s) given off as gases to the afterburner for combustion; and means for passing the combustion gases from the afterburner to the retort assembly to provide additional heat for use in the heating of contaminated material(s) in the retort.
Preferably, the apparatus includes a high temperature filter through which the gaseous volatile material(s) pass after leaving the retort and prior to entering the afterburner.
According to yet another aspect of the present invention there is provided a high temperature filter which is suitable for use but not limited to the treatment of volatile gaseous contaminated material, the filter including a main body having first and second chambers therein which chambers when the filter is in its operative position include an upper region and a lower region, an opening providing communication between the chambers, said opening being at the lower region of the chambers, an inlet for delivering gaseous contaminated material to the first chamber in the upper region thereof, an outlet for discharging the gaseous material from the second chamber, a solids collection zone adjacent the opening, a solids discharge outlet for discharging solids from the solids collection zone, a baffle opposite to and paced from the inlet upon which incoming gases impinge and filter means for filtering the gaseous material passing out of the second chamber via the outlet.
According to another aspect of the present invention there is provided a retort for use in the treatment of volatile material, the retort including a cylindrical body which is mounted for rotation about its longitudinal axis, said body having an infeed end and an outlet end, a combustion chamber, said cylindrical body being at least partially located within the combustion chamber, a plurality of balls or like elements disposed within the cylindrical body arranged to interact with contaminated material when the cylindrical body is rotating to break down the material and dislodge carbonised material which may form on the internal wall of the cylindrical body. The retort is particularly suitable for use in apparatus of the type described herein.
Preferably the retort includes a cage within the cylinder which retains the balls in the region of the wall of the cylindrical body. Preferably, the balls are arranged in groups, the groups being at spaced intervals along the interior of the cylindrical body. The cage includes spaced apart peripherally extending members which are adapted to assist in retaining the balls in each group at a particular location within the cylindrical body. Preferably, the balls are made of ceramic material. Preferably, the cage is mounted for rotation in the opposite direction to the cylindrical body.
In one embodiment of the invention the combustion gases are passed through the interior of the retort. In another embodiment the combustion gases are passed to the heating means.
When the contaminated material to be treated is in the form of solids, the solids are preferably passed through a grizzly or sieve prior to entering the retort to remove oversized material. If desired the solids may in addition to or alternatively to the above be passed through a mill prior to entering the retort so as to reduce the particle or granule size of the solids.
When the contaminated material is in the form of liquid, the water content of the liquid is preferably reduced prior to entering the retort. To this end the liquids may be preheated to boil off the water prior to entering the retort.
Preferably, the rotary retort rotates about an axis inclined at a small angle to the horizontal and is substantially surrounded by a combustion chamber to enable indirect heating of the retort.
Preferably, the combustion gases pass through a scrubber before being released into the atmosphere after passing through the retort. The gases from the high temperature filter may be passed through a condenser, where the condensate contains hydrocarbon fractions such as fuel oil and lubrication oil fractions.
In the high temperature filter according to the invention, the baffle is preferably defined by a wall which separates the said first and second chambers. Preferably, the wall extends from an upper internal wall of the chambers and terminates at a point spaced from a lower internal wall of the chambers, the space between the free end of the wall and the lower internal wall of the filter defining the opening. The wall may have fins thereon.
Preferably, the discharge outlet comprises a plurality of outlet ports in the upper wall of said second chamber. Preferably, the filter means comprises a plurality of ceramic candles, each ceramic candle being associated with a respect outlet, the ceramic candles extending into the second chamber.
There may further be provided a gas collecting chamber for receiving the gaseous material from the outlets and a discharge outlet for discharging the gaseous material from the gas collecting chamber. Fan suction means may be provided for drawing the gaseous material from the second chamber through the outlets.
The filter may further include pulsing means for delivering a gas under pressure to the filter means in the opposite direction of normal flow for cleaning the filter means. Preferably, the
Finsten Edward Elliott
Robertson Struan Glen
Cesari and McKenna
Ferensic Denise L.
Rinehart Th. B.
Tox Free Systems
LandOfFree
Volatile materials treatment system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Volatile materials treatment system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Volatile materials treatment system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2502108