Voice over data telecommunications network architecture

Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S401000

Reexamination Certificate

active

06614781

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to telecommunications networks and, more particularly, to a system and method for providing transmission of voice and data traffic over a data network, including the signaling, routing and manipulation of such traffic.
2. Related Art
The present invention relates to telecommunications, and in particular to voice and data communication operating over a data network. The Public Switched Telephone Network (PSTN) is a collection of different telephone networks owned by different companies which have for many years provided telephone communication between users of the network. Different parts of the PSTN network use different transmission media and compression techniques.
Most long distance calls are digitally coded and transmitted along a transmission line such as a T
1
line or fiber optic cable, using circuit switching technology to transmit the calls. Such calls are time division multiplexed (TDM) into separate channels, which allow many calls to pass over the lines without interacting. The channels are directed independently through multiple circuit switches from an originating switch to a destination switch. Using conventional circuit switched communications, a channel on each of the T
1
lines along which a call is transmitted is dedicated for the duration of the call, whether or not any information is actually being transmitted over the channel. The set of channels being used by the call is referred to as a “circuit.”
Telecommunications networks were originally designed to connect one device, such as a telephone, to another device, such as a telephone, using switching services. As previously mentioned, circuit-switched networks provide a dedicated, fixed amount of capacity (a “circuit”) between the two devices for the entire duration of a transmission session. Originally, this was accomplished manually. A human operator would physically patch a wire between two sockets to form a direct connection from the calling party to the called party. More recently, a circuit is set up between an originating switch and a destination switch using a process known as signaling.
Signaling sets up, monitors, and releases connections in a circuit-switched system. Various signaling methods have been devised. Telephone systems formerly used in-band signaling to set up and tear down calls. Signals of an in-band signaling system are passed through the same channels as the information being transmitted. Early electromechanical switches used analog or multi-frequency (MF) in-band signaling. Thereafter, conventional residential telephones used in-band dual-tone multiple frequency (DTMF) signaling to connect to an end office switch. Here, the same wires (and frequencies on the wires) were used to dial a number (using pulses or tones), as are used to transmit voice information. However, in-band signaling permitted unscrupulous callers to use a device such as a whistle to mimic signaling sounds to commit fraud (e.g., to prematurely discontinue billing by an interexchange carrier (IXC), also known as a long distance telephone company).
More recently, to prevent such fraud, out-of-band signaling systems were introduced. Out-of-band signaling uses a signaling network that is separate from the circuit switched network used for carrying the actual call information. For example, integrated services digital network (ISDN) uses a separate channel, a data (D) channel, to pass signaling information out-of-band. Common Channel Interoffice Signaling (CCIS) is another network architecture for out-of-band signaling. A popular version of CCIS signaling is Signaling System 7 (SS7). SS7 is an internationally recognized system optimized for use in digital telecommunications networks.
SS7 out-of-band signaling provided additional benefits beyond fraud prevention. For example, out-of-band signaling eased quick adoption of advanced features (e.g., caller id) by permitting modifications to the separate signaling network. In addition, the SS7 network enabled long distance “Equal Access” (i.e., 1+ dialing for access to any long distance carrier) as required under the terms of the modified final judgment (MFJ) requiring divestiture of the Regional Bell Operating Companies (RBOCs) from their parent company, AT&T.
An SS7 network is a packet-switched signaling network formed from a variety of components, including Service Switching Points (SSPs), Signaling Transfer Points (STPs) and Service Control Points (SCPs). An SSP is a telephone switch which is directly connected to an SS7 network. All calls must originate in or be routed through an SSP. Calls are passed through connections between SSPs. An SCP is a special application computer which maintains information in a database required by users of the network. SCP databases may include, for example, a credit card database for verifying charge information or an “800” database for processing number translations for toll-free calls. STPs pass or route signals between SSPs, other STPs, and SCPs. An STP is a special application packet switch which operates to pass signaling information.
The components in the SS7 network are connected together by links. Links between SSPs and STPs can be, for example, A, B, C, D, E or F links. Typically, redundant links are also used for connecting an SSP to its adjacent STPs. Customer premises equipment (CPE), such as a telephone, are connected to an SSP or an end office (EO) switch.
To initiate a call in an SS7 telecommunications network, a calling party using a telephone connected to an originating EO switch, dials a telephone number of a called party. The telephone number is passed from the telephone to the SSP at the originating EO (referred to as the “ingress EO”) of the calling party's local exchange carrier (LEC). A LEC is commonly referred to as a local telephone company. First, the SSP will process triggers and internal route rules based on satisfaction of certain criteria. Second, the SSP will initiate further signaling messages to another EO or access tandem (AT), if necessary. The signaling information can be passed from the SSP to STPs, which route the signals between the ingress EO and the terminating end office, or egress EO. The egress EO has a port designated by the telephone number of the called party. The call is set up as a direct connection between the EOs through tandem switches if no direct trunking exists or if direct trunking is full. If the call is a long distance call, i.e., between a calling party and a called party located in different local access transport areas (LATAs), then the call is connected through an inter exchange carrier (IXC) switch of any of a number of long distance telephone companies. Such a long distance call is commonly referred to as an inter-LATA call. LECs and IXCs are collectively referred to as the previously mentioned public switched telephone network (PSTN).
Emergence of competitive LECs (CLECs) was facilitated by passage of the Telecommunications Act of 1996, which authorized competition in the local phone service market. Traditional LECs or RBOCs are now also known as incumbent LECs (ILECs). Thus, CLECs compete with ILECs in providing local exchange services. This competition, however, has still not provided the bandwidth necessary to handle the large volume of voice and data communications. This is due to the limitations of circuit switching technology which limits the bandwidth of the equipment being used by the LECs, and to the high costs of adding additional equipment.
Since circuit switching dedicates a channel to a call for the duration of the call, a large amount of switching bandwidth is required to handle the high volume of voice calls. This problem is exacerbated by the fact that the LECs must also handle data communications over the same equipment that handle voice communications.
If the PSTN were converted to a packet-switched network, many of the congestion and limited bandwidth problems would be solved. However, the LECs and IXCs have invested large amounts of capital in building

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Voice over data telecommunications network architecture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Voice over data telecommunications network architecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voice over data telecommunications network architecture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3065263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.