Voice-controlled electronic musical instrument

Music – Instruments – Electrical musical tone generation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S616000

Reexamination Certificate

active

06653546

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates to musical instruments. More particularly, the invention relates to a voice-controlled electronic musical instrument.
2. Description of the Prior Art
Musical instruments have traditionally been difficult to play, thus requiring a significant investment of time and, in some cases money, to learn the basic operating skills of that instrument. In addition to frequent and often arduous practice sessions, music lessons would typically be required, teaching the mechanical skills to achieve the proper musical expression associated with that instrument, such as pitch, loudness, and timbre. In addition, a musical language would be taught so that the user would be able to operate the instrument to play previously written songs.
The invention relates to a hand-held music synthesizer whose output is controlled by the human voice, referred to herein as “Vocolo™.” The principles and features of the Vocolo were set forth in the patent application entitled “Voice Controlled Electronic Musical Instrument,” PCT Serial No. PCT/US00/13721, henceforth referred to as the “Reference Patent Application.” Note that alternate names of the Vocolo™ used in the reference document were “HumHorn™” and “HumBand™.” The Vocolo is an electronic, voice-controlled musical instrument. It is in essence an electronic kazoo. The player hums into the mouthpiece, and the device imitates the sound of a musical instrument whose pitch and volume change in response to the player's voice. The player is given the impression of playing the actual instrument and controlling it intimately with the fine nuances of his voice.
The evolution of musical instruments has been relatively slow, with few new musical-instrument products taking hold over the past several hundred years. The introduction of electronics-related technology, however, has had a significant impact on musical-instrument product development. The music synthesizer, for example, together with the piano keyboard interface/controller, has vastly expanded the number and variety of instrument sounds which can be produced by a person who has learned to play a single instrument—that of piano or keyboards. The requirement remained, however, that for someone to operate a synthesizer, that person would have to learn at least some of the fundamentals of music expression associated with playing a piano.
Therefore, for those people who wanted to be able to express themselves musically, but had not learned to play an instrument, or wanted to be able to make many instrument sounds without learning how to play each instrument, there was still a significant time investment required to learn the skill, with no assurance that they could ever reach a level of proficiency acceptable to them.
In U.S. Pat. Nos. 3,484,530 and 3,634,596 there are disclosed systems for producing musical outputs from a memory containing recorded musical notes that can be stimulated by single note inputs through a microphone. The systems disclosed in these patents are reportedly able to detect pitch, attack, sustain, and decay as well as volume level and are able to apply these sensed inputs to the recorded note being played back. In effect, the systems are musical note to musical note converters that may be converted fast enough so that no lag can be detected by the listener or by the player. However, to achieve these capabilities, rather cumbersome and expensive electronic and mechanical means were suggested, which are not suited for portable or handheld instruments, but primarily intended for larger systems.
In the systems disclosed in the above patents, the memory is capable of containing discrete notes of the chromatic scale and respond to discrete input notes of the same pitch. The system is analogous to a keyboard instrument where the player has only discrete notes to choose from and actuates one by depressing that particular key. Other musical instruments give a player a choice of pitches between whole and half tone increments. For example, a violin can produce a pitch which is variable depending upon where the string is fretted or a slide trombone can cause a pitch falling in between whole and half tone increments. Both of these instruments produce an unbroken frequency spectrum of pitch. However, such prior art systems are not able to provide a continually varying pitch at the output in response to a continually varying pitch at the input, nor have they been able to produce a note timbre that realistically duplicates what a real instrument does as a function of pitch over the range of the instrument nor provide a note quality or timbre which realistically duplicates what a real instrument does as a function of degree of force at the input of an instrument.
A variety of other methods have been proposed to use the human voice to control a synthesizer, thus taking advantage of the singular musical expression mechanism which most people have. Virtually anyone who can speak has the ability to change musically expressive parameters such as pitch and loudness. One such method is described in R. Rupert, U.S. Pat. No. 4,463,650 (Aug. 7, 1984). In the Rupert device, real instrumental notes are contained in a memory with the system responsive to the stimuli of, what he refers to as “mouth music” to create playable musical instruments that responds to the mouth music stimuli in real time. See, also, K. Obata, Input apparatus of electronic device for extracting pitch from input waveform signal, U.S. Pat. No. 4,924,746 (May 15, 1990).
Ishikawa, Sakata, Obara, Voice Recognition Interval Scoring System, European Pat. No. 142,935 (May 29, 1985), recognizing the inaccuracies of the singing voice “contemplates providing correcting means for easily correcting interval data scored and to correct the interval in a correcting mode by shifting cursors at portions to be corrected.” In a similar attempt to deal with vocal inaccuracies, a device described by M. Tsunoo et al, U.S. Pat. No. 3,999,456 (Dec. 28, 1976) uses a voice keying system for a voice-controlled musical instrument which limits the output tone to a musical scale. The difficulty in employing either the Ishikawa or the Tsunoo devices for useful purposes is that most untrained musicians do not know which scales are appropriate for different songs and applications. The device may even be a detractor from the unimproved voice-controlled music synthesizer, due to the frustration of the user not being able to reach certain notes he desires to play.
In a related area, the concept of “music-minus-one” is the use of a predefined usually prerecorded musical background to supply contextual music around which a musician/user sings or plays an instrument, usually the lead part. This concept allows the user to make fuller sounding music, by playing a key part, but having the other parts played by other musicians. Benefits to such an experience include greater entertainment value, practice value and an outlet for creative expression.
M. Hoff, Entertainment and creative expression device for easily playing along to background music, U.S. Pat. No. 4,771,671 (Sep. 20, 1988) discloses an enhancement to the music minus-one concept, providing a degree of intelligence to the musical instrument playing the lead the voice-controlled music synthesizer, in this case so as not to produce a note which sounds dissonant or discordant relative to the background music. In addition, Hoff discloses a variation on the voice-controlled music synthesizer by employing correction. Rather than correcting the interval in an arbitrary manner, as suggested in the Tsunoo and Ishikawa patents, this device adjusts the output of the music synthesizer to one which necessarily sounds good to the average listener, relative to predefined background music. However, Hoff performs pitch correction only in the context of pre-programmed accompaniments, using the scale note suggested by the accompaniment nearest to the detected pitch. Hoff does not provide pitch correction in the absence of accompaniment, for example, the capability for the us

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Voice-controlled electronic musical instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Voice-controlled electronic musical instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voice-controlled electronic musical instrument will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.