Voice and data wireless communications network and method

Multiplex communications – Channel assignment techniques – Combining or distributing information via time channels...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S338000, C370S447000

Reexamination Certificate

active

06404772

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to wireless local area networks (“LANs”), and more particularly, to wireless local area networks that carry a mixed traffic of voice and data.
Wireless LANs are typically used in applications that involve mobile computers, in applications where wireline installation is not feasible, etc. Such applications include warehouse inventory tracking, portable point of sale, shipping and receiving, package tracking, etc.
The IEEE 802.11 communications standard has been used by some vendors to provide interoperability between wireless LAN equipment. The 802.11 standard specifies a protocol in which information is transmitted in packets. The standard specifies features such as packet size, packet content information, data rates, roaming, etc. The primary type of information that was initially transmitted in systems that were designed to the 802.11 standard as published was information such as barcode information, point of sale information, package tracking information, etc. In such known systems, several remote terminals may be in communications with a single access point to receive and transmit information such as bar code information, point of sale information, package tracking information, etc. The standard as published specifies a communications medium that is shared by transmitters (e.g., an access point and one or more remote terminals).
The standard further specifies that packet size may vary. A remote terminal that has a relatively large packet to transmit may need to occupy the shared communications medium for a longer period than a remote terminal that has a relatively short packet to transmit. Until recently, delays in communicating packets have typically been non-critical to providing communications at least partly because of the type of information that has been transmitted in such systems. Information such as bar code information, package tracking information, etc. typically remains valid until a next incremental event occurs (e.g., until bar code information has changed, until a package is tracked to a next point in route, etc.). In addition, such information does not generally affect system communications if delivered with some delay.
In some known systems, packets are simply transmitted in the order in which they have been received for transmission. In these known systems, a packet that is transmitted without being properly acknowledged by its intended recipient is repeated for a predetermined number of times while transmission of other remaining packets is delayed. After retransmitting a packet for a predetermined number of times without receiving a proper acknowledgment, the transmitter may proceed to transmit the remaining packets.
The demand for providing mixed voice and data traffic in wireless LAN systems has been increasing over recent years. Currently, the 802.11 standard does not provide specifications for providing voice communications. Information for providing voice communications is generally much more time critical than other information such as bar code information, package tracking information, etc. Communications for providing voice communications may require a greater volume of information to be carried by the system than when the system is providing communications for information that has typically been carried by wireless LANS. Moreover, the quality of voice communications is dependent on the rate in which information is exchanged. In data communications such as in communications for package tracking, the rate in which information is exchanged is non-critical because the quality of such communications is typically not a factor in evaluating the effectiveness of such communications.
Some known wireless LANs carry voice signals as part of the communications traffic but these systems are deficient in effectively meeting such complex communications demands as discussed above. Moreover, there may be a need to meet such demands with existing systems without substantially increasing system complexity, structure, design, cost, etc.
SUMMARY OF THE INVENTION
In accordance with the principles of the present invention, a mixed traffic voice and data communications transmitter and network may be provided. The communications network may be a wireless local area network that uses packet based communications. The communications network may include at least one access point that receives voice and other communications for transmission to terminals that are associated with the access point.
To manage the transmission of packets, a transmitter may prioritize packets. Prioritization may be based on when each packet has been received, whether the packets contain voice communications, whether the packets contain network-management communications, whether the packets contain data communications (e.g., communications other than for voice or network management), whether the packet is directed to a voice-capable unit, whether a packet was transmitted using a particular communications protocol, etc.
A transmitter, such as an access point, may prioritize packets for transmission based on to which receiver terminal the packets have been addressed. Packets may be separated into queues with each queue storing the packets that have been received for transmission to a particular terminal. Packets may be further prioritized within each queue.
Prioritized packets may be transmitted in a sequence that allows a fair opportunity to each terminal to receive the same number of packets. For example, packets may be transmitted in rounds. In each round, the highest priority packet for each terminal may be transmitted (e.g., in a one packet per round per terminal fashion). In each round, an equal number of packets may be transmitted to each terminal (e.g., one per packet).
For each transmitted packet, an acknowledgment (e.g., an acknowledge packet) from a receiving terminal may be required before the transmitter discards the transmitted packet or moves onto transmitting the next packet for that terminal. A transmitter may repeatedly transmit a packet until it is acknowledged or until a retry threshold (e.g., a total number of times that a packet is to be transmitted) has been reached. The retry threshold may be determined based on whether the packet that is being retransmitted is for voice communications. The retry threshold for voice communications may be lower than for other communications. In communications networks that use frequency hopping spread spectrum communications, a packet may be retransmitted when the number of times the packet has been transmitted reaches an initial retry threshold. When the initial retry threshold is reached without an acknowledgment being received, retransmission may be discontinued until after a frequency hop in modulation. Thereafter, retransmissions may resume until an acknowledgment is received or until a total retry threshold has been reached. The initial and total retry thresholds may vary based on whether the packet that is being retransmitted is for voice communications.
New packets that are received and prioritized may have a higher priority than unacknowledged packets. Retransmission of an unacknowledged packet may be preempted when a packet with a priority that is higher than the packet being retransmitted Us received. A transmitter may transmit a newly received packet for a particular terminal over other earlier received packets for that same terminal when the newly received packet is determined to have a higher priority than the other packets. An unacknowledged packet may then be retransmitted in a later round.


REFERENCES:
patent: 4168400 (1979-09-01), de Couasnon et al.
patent: 4500987 (1985-02-01), Hasegawa
patent: 4503533 (1985-03-01), Tobagi et al.
patent: 4630264 (1986-12-01), Wah
patent: 5029183 (1991-07-01), Tymes
patent: 5103461 (1992-04-01), Tymes
patent: 5142550 (1992-08-01), Tymes
patent: 5157687 (1992-10-01), Tymes
patent: 5231633 (1993-07-01), Hluchyj et al.
patent: 5280498 (1994-01-01), Tymes et al.
patent: 5329531 (1994-07-01), Diepstraten
patent: 5418812 (1995-05-01), Reyes et al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Voice and data wireless communications network and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Voice and data wireless communications network and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voice and data wireless communications network and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2952305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.