VMP-like sequences of pathogenic Borrelia

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Bacterium or component thereof or substance produced by said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S184100, C424S185100, C424S190100, C424S192100, C435S004000, C435S007100, C435S007200, C435S007320, C436S501000, C530S300000, C530S350000, C536S023100, C536S023400, C536S023700

Reexamination Certificate

active

06719983

ABSTRACT:

1.0 BACKGROUND OF THE INVENTION
1.1 Field of the Invention
The invention relates to the field of molecular biology; in particular, to immunogenic compositions and recombinant VMP-like genes useful for treatment and diagnosis of Lyme disease. Also included are methods for the determination of virulence factors in Lyme disease.
1.2 Description of Related Art
Lyme disease is a bacterial infection caused by pathogenic spirochetes of the genus Borrelia. The infection can occur in humans, dogs, deer, mice and other animals, and is transmitted by arthropod vectors, most notably ticks of the genus Ixodes.
Borrelia burgdorferi
, the most common cause of Lyme disease in North America, was first cultured in 1982
. B. garinii
and
B. afzelii
are the most common infectious agents of Lyme disease in Europe, and another species,
B. japonicum
, has been described in Japan. These organisms are closely related and cause similar manifestations with multiple stages: an expanding rash at the site of the tick bite (erythema migrans); fever, lymphadenopathy, fatigue, and malaise; effects of disseminated infection, including carditis, meningoradiculitis, and polyarthritis; and chronic manifestations including arthritis and neurologic disorders. Lyme disease is often difficult to diagnose because of shared manifestations with other disorders, and it can also be refractory to treatment during late stages of the disease. It is most common in areas such as suburban regions of upstate New York and Connecticut, where large populations of deer and white-footed mice serve as the principal mammalian hosts and reservoirs of infection. Approximately 10,000 cases of Lyme disease in humans are reported per year in the United States, and it is also a significant veterinary problem due to a high infection rate of dogs and other domestic animals in endemic regions.
B. burgdorferi
, the etiologic agent of Lyme disease, is able to persist for years in patients or animals despite the presence of an active immune response (Steer, 1989; Schutzer, 1992). Antigenic variation has been postulated previously as a mechanism whereby
B. burgdorferi
evades the immune response in the mammalian host (Schwan et al., 1991; Wilske et al., 1992). Antigenic variation has been defined as changes in the structure or expression of antigenic proteins that occurs during infection at a frequency greater than the usual mutation rate (Borst and Geaves, 1987; Robertson and Meyer, 1992; Seifert and So, 1988).
Relapsing fever is another disease caused by pathogenic Borrelia. It has both epidemic and endemic forms. The epidemic form is caused by
B. recurrentis
and is transmitted between humans by lice. It was a major source of morbidity and mortality during World War I, but has been rare since then due largely to public health measures. Endemic relapsing fever is an epizootic infection caused by several Borreliae species, including
B. hermsii
. It occurs sporadically among hunters, spelunkers, and others who come in contact with infected soft-bodied ticks of the genus Ornithidorus. Relapsing fever is characterized by two or more episodes or “relapses” of high bacteremia (up to 10
8
/ml). The first wave of infection is caused by Borreliae expressing a certain Variable Major Protein (VMP) on their surface (e.g. Vmp21). The gene encoding this VMP is located at a promoter site in the expression plasmid, whereas over 24 nonexpressed copies of different VMP genes are present on the so-called silent plasmid. When the host develops antibodies against the expressed VMP, the organisms of that stereotype are destroyed and the patient improves. However, a small proportion of organisms have undergone antigenic switching to a different stereotype. Nonreciprocal recombination occurs between the expression plasmid and the silent plasmid, resulting in the insertion of a different VMP gene in the expression site (e.g., Vmp7). The organisms expressing Vmp7 are not affected by the anti-Vmp21 antibodies, and therefore multiply in the host and cause a second episode of the disease. Up to five of these 3-5 day episodes can occur, separated by 1-2 week intervals.
Such well-demarcated episodes of infection do not occur during Lyme disease, and fewer organisms are present in the blood and in tissues at any stage. However, there are reasons to suspect that similar mechanisms of antigenic variation may occur in
B. burgdorferi
and other Lyme disease Borreliae. The infection, if untreated, commonly persists for months to years despite the occurrence of host antibody and cellular responses; this observation indicates effective evasion of the immune response. Lyme disease may be disabling (particularly in its chronic form), and thus there is a need for effective therapeutic and prophylactic treatment.
Certain
B. burgdorferi
genes and proteins have been patented, including Outer Surface Protein D (OspD) (U.S. Pat. No. 5,246,844; issued Sep. 21, 1993). OspD has not proven to be a useful protein for diagnosis or immunoprotection. Other proteins, including OspA and OspC, have been considered as vaccine candidates for Lyme disease, including a recombinant OspA vaccine currently in human clinical trials. Other vaccines are in use or undergoing testing in veterinary applications, including vaccination of dogs. However, animal studies indicate that OspA vaccination may not be effective against all strains of Lyme disease Borreliae. OspA is also not useful for immunodiagnosis, due to weak antibody responses to OspA in Lyme disease patients.
Previous studies have generally failed to provide evidence for the occurrence of antigenic variation in Lyme disease Borrelia. Genetic heterogeneity in the genes encoding the membrane lipoproteins OspA, OspB, OspC, and OspD has been well documented among strains of Lyme disease Borreliae (Marconi et al., 1993; Marconi et al., 1994; Livey et al., 1995). In addition, mutations in ospA and ospB have been shown to occur in vitro (Rosa et al., 1992; Sadziene et al., 1992). However, no significant antigenic change (Barthold, 1993) or gross genetic alteration (Persing et al., 1994; Stevenson et al., 1994) has been detected in
B. burgdorferi
N40 isolates from chronically infected BALB/c and C3H mice, other than the loss of the 38-kilobase (kb) plasmid encoding OspD. Therefore the heterogeneity in Osp proteins observed among
B. burgdorferi
sensu lato isolates appears to represent evolutionary divergence (“antigenic drift”) rather than antigenic variation.
There is a commercial demand for vaccines and diagnostic kits for Lyme disease, both for human and veterinary use. Several companies have active research and development programs in these areas.
2.0 SUMMARY OF THE INVENTION
Partial and complete DNA sequences have been determined for several recombinant clones containing DNA encoding VMP-like sequences. The identification and characterization of these sequences now allows: (1) identification of the expressed gene(s) in
B. burgdorferi
; (2) expression of these gene(s) by a recombinant vector in a host organism such as
E. coli
; (3) immunization of laboratory animals with the resulting polypeptide, and determination of protective activity against
B. burgdorferi
infection; (4) use of antibodies against the expressed protein to identify the reactive polypeptide(s) in
B. burgdorferi
cells; (5) use of the expressed protein(s) to detect antibody responses in infected humans and animals; (6) determination of the presence, sequence differences, and expression of the VMP-like DNA sequences in other Lyme disease Borreliae.
The invention is contemplated to be useful in the immunoprophylaxis, diagnosis, or treatment of Lyme disease, relapsing fever, or related diseases in humans or animals. It is expected that recombinant or native proteins expressed by the VMP-like genes (or portions thereof) will be useful for (a) immunoprophylaxis against Lyme disease, relapsing fever, or related disorders in humans and animals; (b) immunotherapy of existing Lyme disease, relapsing fever, or related illnesses, by way of immunization of injection of antibodies dire

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

VMP-like sequences of pathogenic Borrelia does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with VMP-like sequences of pathogenic Borrelia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and VMP-like sequences of pathogenic Borrelia will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3255287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.