VLSI circuit with temperature monitoring

Electricity: electrical systems and devices – Safety and protection of systems and devices – Circuit interruption by thermal sensing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S106000

Reexamination Certificate

active

06411484

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the field of semiconductor manufacture. Specifically, the invention relates to a VLSI circuit with temperature monitoring. The VLSI circuit has at least one integrated semiconductor chip arranged in a housing and connected via connecting lines to contact terminals that are accessible from outside the housing
In general, integrated circuits designated as VLSI circuits are those in which a very large number of individual circuit components are accommodated on the semiconductor chip in an extremely small space. Examples of VLSI circuits are microprocessor chips, memory chips, etc.
In operation, particularly in continuous operation, such VLSI chips generate a considerable amount of heat, which must be dissipated in a suitable manner. Heat sinks are regularly used for this purpose. The heat sinks are cooling bodies that are physically connected to the housings of the VLSI chips in order to dissipate the heat. It is frequently the case that a temperature fan is also arranged in proximity to the VLSI chip. The fan additionally provides for sufficient heat dissipation. In this case, the heat sink and the fan are regularly dimensioned so as to enable sufficient heat dissipation. As a rule, this means an overdimensioning of the heat sink and/or of the fan motor. Such a configuration is disclosed, for example, in published European patent application EP 0 701 279 A1.
It has also been known in the art to drive the temperature fan faster as the temperature increases, that is to say to increase the rotational speed in order to provide for greater heat dissipation. Finally, it has also been known for a safety shutdown of the apparatus containing the VLSI chip, e.g. a personal computer, to be carried out in the event of over-temperature. In that case, the apparatus is disconnected from the power supply until the temperature has fallen below the critical value of the predetermined overtemperature. However, in that case the regulating device and the temperature sensor are regularly disposed outside the VLSI chip.
Integrated circuits with a temperature sensor are disclosed as such in published Japanese patent application JP 02 052263, for example. However, the latter document does not concern VLSI circuits, but rather those in which a power switch generating a heat loss is integrated in a semiconductor chip. The temperature sensor circuit is connected to the control terminal of the power switch in that case.
Such a circuit configuration is described, for example, in European patent EP 0 208 970 B1 and in Japanese application JP 58-073145 A. In order to protect the power MOSFET when an overtemperature occurs, a second semiconductor body, which contains a temperature sensor circuit and a semiconductor switch, is adhesively bonded onto a semiconductor body containing the power MOSFET. The two semiconductor bodies are in good thermal contact with one another, with the result that an overtemperature that occurs within the semiconductor body of the power MOSFET can be detected in the temperature sensor circuit. The electronic switch (e.g. a thyristor) within the second semiconductor body is connected between the source electrode and the drain electrode of the power MOSFET. If the temperature within the MOSFET rises as a result of an overload or a high ambient temperature, the electronic switch contained in the second semiconductor body short-circuits the gate electrode to the source electrode of the MOSFET. The result is that the voltage previously present in the on-state between the source electrode and the gate electrode of the MOSFET collapses and the MOSFET switches off.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a VLSI circuit with a temperature monitor, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which ensures optimum temperature regulation of the semiconductor chip contained in the VLSI circuit.
With the foregoing and other objects in view there is provided, in accordance with the invention, a temperature-monitored VLSI circuit, comprising:
a housing with a plurality of externally accessible contact terminals;
an integrated semiconductor chip disposed in the housing and a plurality of connecting lines electrically connecting the semiconductor chip to respective the contact terminals;
a temperature sensor chip disposed in thermal contact with the semiconductor chip in the housing, and connecting lines connecting the temperature sensor chip to additional the contact terminals; and
a regulating circuit for temperature regulation of the VLSI circuit connected to the additional contact terminals.
The essential concept of the invention is found in the provision that a temperature sensor chip in thermal contact with the semiconductor chip is arranged in the housing, in that connecting lines of the temperature sensor chip are connected to additional contact terminals of the housing, and in that a regulating circuit for temperature regulation of the VLSI circuit is connected to the additional contact terminals.
In accordance with an added feature of the invention, the temperature sensor chip is disposed to be completely insulated from the semiconductor chip. Furthermore, the temperature sensor chip may be at the same reference-ground potential as the semiconductor chip, or it may be provided for connection to the same supply potential as the semiconductor chip.
In accordance with an additional feature of the invention, the temperature sensor chip generates a digital output signal or an analog output signal. The output signal is processed further by a regulating device. Specifically, the output signal of the temperature sensor chip is provided as a regulating signal for initiating temperature regulation in order to keep the temperature in the housing of the VLSI chip at the location of the temperature sensor chip below a predetermined threshold value.
The temperature regulation may be implemented in a variety of ways: First, the clock frequency of the semiconductor chip may be reduced in order to reduce the heating power output of the chip. Next, the cooling air supply to the VLSI circuit may increased. It is also possible to reduced the voltage supply to the semiconductor chip. Combinations of these measures are possible as well. Finally, a complete shutdown of the circuit may be caused as a temperature regulation.
In accordance with a further feature of the invention, a fan with a fan motor is provided for cooling the VLSI circuit, and wherein the temperature sensor includes a power switch connected on an output side of the sensor chip for selectively switching the fan motor on or off. The power switch may be a Triac, a GTO, a MOSFET, or the like connected externally of the chip.
In accordance with another feature of the invention, the regulating circuit is integrated in the housing.
With the above and other objects in view there is also provided, in accordance with the invention, a temperature-monitored VLSI circuit, comprising:
a housing with a plurality of externally accessible contact terminals;
an integrated semiconductor chip disposed in the housing and a plurality of connecting lines electrically connecting the semiconductor chip to respective the contact terminals;
a temperature sensor chip disposed in thermal contact with the semiconductor chip in the housing; and
a regulating circuit integrated in the housing, the regulating circuit being connected to the temperature sensor chip and regulating a temperature of the VLSI circuit.
In accordance with a concomitant feature of the invention, the regulating circuit is integrated in the temperature sensor chip and/or it is directly connected to the semiconductor chip.
To summarize, then, the invention proposes that a temperature sensor chip be fixed in the housing of the integrated circuit on the VLSI chip, which may be of any desired type and fabricated according to any desired fabrication technology, and be in thermal contact with said VLSI chip. The temperature se

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

VLSI circuit with temperature monitoring does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with VLSI circuit with temperature monitoring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and VLSI circuit with temperature monitoring will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2906352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.