Visual display system for multi-user application

Amusement devices: games – Including means for processing electronic data – With communication link

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C463S001000

Reexamination Certificate

active

06746332

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to multi-user virtual reality systems. More particularly, the invention relates to a multi-player gaming system for use over the Internet by numerous remotely connected users.
BACKGROUND OF THE INVENTION
The Internet has become a popular medium through which much of our traditional social functions are being conducted. E-commerce applications are making personal shopping business-to-business transactions and interpersonal communication easier than ever. Internet-based electronic auctions allow professionals and individuals to post items for sale onto an electronic auction block for which other members of the Internet community may provide competitive bid prices. Electronic interpersonal communications have become common place as individuals and corporations communicate and conduct business with one another through e-mail, online telephony, video conferencing, and other new emerging communication products employing the Internet.
Despite the widespread acceptance of the Internet, the majority of Internet communications constitutes point-to-point communications that do not occur in real-time. Such point-to-point communication occurs when a single entity (person or business) communicates with only one other entity. Thus, electronic point-to-point conversations do not occur in real time and are not available to be seen or heard by anyone other than the two participants within a particular communications domain.
In an electronic auction context, a single server computer may be used to list a particular item for worldwide bidding. However, the multiple users of the electronic auction system do not interact with one another simultaneously and in real-time, as would typically be the case when an item is introduced on an auction block in the real world. Simultaneous, real-time visual and aural perception of large multi-user virtual communities have heretofore not been provided for by any software or computer systems currently in use on the Internet.
Avatar-based chat rooms and shopping malls are examples of Internet-based multi-user systems in which relatively small numbers of simultaneous users communicate with each other over the Internet. For example, ACTIVEWORLDS.COM provides a realistic, 3-D virtual reality chat service in which virtual reality worlds are created and avatar-based caricatures correspond with each other in a 3-D graphical environment. An “avatar”, as used herein, refers to the physical incarnation of an online user in the virtual reality world. The avatar may be a scanned image of the user's face, for example, or a more complicated computer-generated charicature for use by the virtual reality participant. Such systems are limited, however, in that only a relatively small number of simultaneous participants typically communicate at any one time.
Further, a practical graphical limit to the number of simultaneous virtual reality users is present with respect to various aspects of the transactional ability of virtual reality computer systems. One difficulty is that a large a number of users will typically overrun the ability of any system to provide simultaneous, real-time communication and interaction particularly when graphics and three dimensional (“3D”) avatars and environments are involved. Further complicating these limitations are the computational problems related to the number of multi-point users who may need to perceive one another. These problems increase exponentially with the number of participants. Therefore, a need exists for computer software and hardware systems directed to a large scale multi-user transaction system that facilitates online communication between multiple parties on a simultaneous, real-time basis. A large scale multi-user system of the type needed would support online user communities in which numerous simultaneous users are present within the community and are capable of both aural and visual perception.
One complication in the implementation of a massively multi-player interactive game is the design and implementation of a computer system which can efficiently administer thousands of remote participants in an online virtual community. Two problems to be solved in designing such a system include: (1) creating an efficient system architecture for supporting a large number of simultaneous users; and (
2
) load balancing the users' transactions among computer servers. Typical computer systems will load balance the number of transactions evenly across all computer servers. This load balancing arrangement may not be desirable in a computer system implementing a virtual reality environment, however, since each server would have to possess a replication of the entire virtual reality in all its transactional variation. Thus, a need exists for a system that can efficiently implement and manage a massive multi-player game of the type described.
Other problems encountered in the design of such a multi-player virtual reality system are the difficulties in designing and implementing the software and computer systems used to monitor the virtual reality community. Much like the real world, a structure for administering to problems and rogue conduct of the users within virtual reality needs to be provided for the numerous users. No centralized monitoring system is currently available in a large scale system to simultaneously answer users' questions, monitor and respond to users' actions and communicate with users of the virtual community on a real-time basis. As a practical matter, administering and monitoring the virtual reality world of thousands of users, including a problem resolution system, system integrity issues, transmission bottleneck detection and elimination and other aspects of the system administration, need to be carefully regulated so that the system runs efficiently and the virtual reality experience provided to the numerous users is as realistic as possible.
Another barrier to the overall usability of a large scale networked multi-user virtual reality system is the relatively large amount of data that the system needs to present to each user. The data is necessary to accommodate the flow of information occurring between participants and the system servers and provide a good graphical rendering of that “person” or avatar. A massive multi-user environment that can accommodate thousands of users must overcome problems associated with providing such information to all users through the administrative computer system so that a virtual reality environment is created. Thus, a need exists for a virtual reality computing system that minimizes the amount of data being transmitted to each of the many users so as to make efficient use of both the computer system's resources and the telecommunications bandwidth that connects the users to the administrative computer system.
In an online virtual reality environment, the transmitted data may include voice or test data for the purpose of permitting the users within the game to communicate with each other and with the system itself. Where the virtual reality environment is a game, such as a role playing game, the data may also include movement commands issued by the players to advance their avatar within the virtual reality environment. Due to the large number of players connected to the game at any point in time, it is advantageous to minimize the size and the latency of the data transmission between the players and the game servers while at the same time preserving some capability to attempt retransmissions for failed data transmissions.
Existing connection oriented protocols, such as the transmission control protocol (“TCP”) operating over the internet protocol (“IP”—or “TCP/IP”) provide for robust error recovery capabilities. In particular, application messages sent as TCP/IP packets include a sequence number as one element of the TCP/IP packet header, or protocol data unit (“PDU”). The entire message is then sent in sequence as a series of TCP/IP datagrams or segments containing both the TCP/IP PDU and the actual da

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Visual display system for multi-user application does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Visual display system for multi-user application, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Visual display system for multi-user application will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3365113

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.