Visual database system

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S426000, C345S629000, C345S632000, C382S276000

Reexamination Certificate

active

06502107

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a visual database system for storing and transmitting image data such as, at least, moving images and still images. More particularly, this invention relates to the visual database system which can provide visual data to a visual data output device capable of outputting visual data in the manner of a display device and a printer, such that the visual data has a resolution appropriate to the resolution of the visual data output device and to the intended use of the visual data.
BACKGROUND OF THE INVENTION
In recent years, due to the development of a variety of visual devices and advances in visual processing technology, visual data having various resolutions are being created and used to produce still images, moving images, and sound. Furthermore, following the development of image processing technology and communications networks, visual data is playing an important role in the world of computers.
Various methods are used to create this type of visual data, such as filming it using a visual input device such as a camera, scanning an image with a scanner, creating visual data using computer graphics (CG), and the like.
To output (display and print) visual data, display methods such as a CRT, a liquid crystal display, a plasma display, visual display devices such as an image projector, and print methods such as printing visual data as a still image using an image printing device such as a printer and a copying machine, are used.
Methods for transmitting visual data in a state that can be reproduced (output) include storing the visual data in a memory medium such as a video tape, a memory, a CD, and a DVD, transmitting the visual data via a wired network such as cable television and the internet, and the like, or transmitting the visual data via a non-wired broadcasting such as television broadcasting.
A visual database system is formed for accumulating and transmitting visual data of this kind. For example, the closest examples of a conventional visual database system are a broadcast system for transmitting visual data from a broadcast station by television broadcasting, a communications karaoke system for transmitting visual data in accordance with a request from a user, a video-on-demand system for similarly transmitting movies (visual data) in accordance with requests from users, and an internet retrieve system for downloading visual data via a network.
However, in the conventional visual database systems described above, the visual data is generally stored in one type of resolution when it is created. In addition, when transmitting the visual data, visual data of only one type of resolution (the same resolution) is transmitted. Therefore, such conventional systems have the following two problems.
(1) Since devices for outputting the transmitted visual data have different resolutions when displaying and printing, there is a problem that the performance of each device cannot between used to sufficient advantage when handling visual data of a single resolution. For example, visual data displayed in large scale has relatively poor resolution, losing the benefits of the characteristics of a large-scale display.
(2) The resolution required differs according to the use for which the visual data is intended, but when the visual data has a single resolution, the resolution may not be the appropriate one, and may be too low or too high for the intended use. For example, when the visual data is displayed as a still image, it should ideally have the maximum resolution of the display device, but when the visual data is displayed as a moving image, it is not essential for the resolution to be high, given the nature of human visual perception.
Conventionally, when creating a database system, the intended use of the visual data and the output device are assumed in advance, and the visual data is stored and transmitted at the most frequent resolution to achieve most appropriate results, but there has not been a visual database system having high usability for storing and transmitting visual data at resolution appropriate for the various intended uses requested by the user and appropriate for the output device.
In a conventional visual database system, it is possible to solve the above problems (1) and (2) simply by storing multiple visual data in multiple resolutions for each visual data. However, in this case, since the visual data to be transmitted must be selected from among the stored resolutions, it may not be possible to transmit visual data at an appropriate resolution. In particular, when the visual data is enlarged prior to output, the resolution of the visual data deteriorates as a result of this enlargement, whereby it is impossible to transmit the visual data with a resolution appropriate to the resolution of the device which outputs the visual data.
Moreover, in the conventional art, no method has been provided for effectively storing visual data formatted so that the amount of data changes with the amount of change of the image in a memory medium wherein the memory position changes over time.
Therefore, for example, when storing visual data formatted so that the amount of data changes with the amount of change of the image in a memory medium wherein the memory position changes over time, in a case where the visual data are merely stored, the memory position changes over time irrespective of the quantity of visual data and whether or not data is present, thereby consuming the memory regions of the memory medium. Consequently, the memory regions of the memory medium are consumed without being used, making it impossible to store the visual data efficiently. When reproducing visual data stored in a memory medium wherein the memory position changes over time, since the elapse of time is stored as a change of the memory position, the visual data must basically be read out from the memory medium at a constant speed.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a visual database system capable of transmitting visual data at a resolution appropriate to the resolution of a device for outputting the visual data, and also capable of transmitting visual data at a resolution appropriate to the use for which the visual data is intended.
It is another object of this invention to provide a visual database system capable of transmitting visual data always having a resolution appropriate to the resolution of the device for outputting the visual data by creating visual data at different resolutions as required from a single visual data prior to transmission.
It is yet another object of this invention to provide a visual database system capable of storing visual data formatted so that the amount of data changes with the amount of change of the image in a memory medium wherein the stored position changes over time, and efficiently reproducing the visual data by reading it out from the memory medium when required.
In order to achieve the above objects, according to one aspect of this invention, a visual database system for storing and transmitting visual data such as at least moving images and still images, comprising at least one visual data input device which visual data are input to; a visual database device which stores the visual data from the visual data input device; at least one visual data output device which receives the visual data at a predetermined resolution from the visual database device, and displays and prints the visual data. The visual database device receives the visual data from the visual data input device, divides the input visual data into multiple block screens, appends a first address to each of the division block screens, further divides the block screens identified by the first addresses, appends a second address to each of the division block screens, and thereafter repeats the dividing and appending of addresses for a predetermined number of times. The visual data are expressed and stored as addresses and image data of a divided image represented by the addresses, and visual data for output

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Visual database system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Visual database system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Visual database system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2996120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.