Visible light emitting vertical cavity surface emitting lasers

Coherent light generators – Particular active media – Semiconductor

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

372 46, 372 96, H01S 319

Patent

active

054286344

ABSTRACT:
A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda.
, typically within the green to red portion of the visible spectrum.

REFERENCES:
patent: 4949350 (1990-08-01), Jewell et al.
J. L. Jewell et al., "Microlasers," Scientific American, vol. 265, No. 5, pp. 86-94, Nov. 1991.
J. L. Jewell et al., "Vertical-Cavity Surface Emitting Lasers: Design, Growth Fabrication, Characterization," IEEE Journal of Quantum Electronics, vol. 27, No. 6, pp. 1332-1346, Jun. 1991.
G. R. Olbright et al., "Cascadable Laser Logic Devices: Discrete Integration of Phototransistors with Surface-Emitting Laser Diodes," Electronics Letters, vol. 27, No. 3, pp. 216-217, Jan. 13, 1991.
J. L. Jewell et al., "Vertical Cavity Lasers for Optical Interconnects," SPIE vol. 1389 International Conference on Advances in Interconnection and Packaging, pp. 401-407, 1990 (no month available).
R. P. Schneider et al., "Visible (657 nm) InGaP/InAlGaP Strained Quantum Well Vertical-Cavity Surface-Emitting Laser," Appl. Phys. Lett., vol. 60, No. 15, pp. 1830-1832, Apr. 1992.
Y. H. Lee et al., "High Efficiency (1.2mW.mA) Top-Surface-Emitting GaAs Quantum Well Lasers," Electronics Letters, vol. 26, No. 16, pp. 1308-1310, Aug. 2, 1990.
H. Yoo et al., "Low Series Resistance Vertical-Cavity Front-Surface-Emitting Laser Diode," Appl. Phys. Lett., vol. 56, No. 20, pp. 1942-1944, May 14, 1990.
Y. H. Lee et al., "Deep-Red Continuous Wave Top-Surface-Emitting Vertical-Cavity AlGaAs Superlattice Lasers," IEEE Photonics Technology Letters, vol. 3, No. 2, pp. 108-109, Feb. 1991.
J. Hashimoto et al., "Effects of Strained-Layer Structures on the Threshold Current Density of AlGaInP/GaInP Visible Lasers", Appl. Phys. Lett., vol. 58, pp. 879-880, 1991 (No month available).
R. S. Geels et al., "InGaAs Vertical-Cavity Surface-Emitting Lasers", IEEE Journal of Quantum Electronics, vol. 27, No. 6, pp. 1359-1367, Jun. 1991.
G. R. Olbright et al., "Linewidth, Tunability, and VHF-Millimeter Wave Frequency Synthesis of Vertical-Cavity GaAs Quantum-Well Surface-Emitting Laser Diode Arrays", IEEE Photonics Technology Letters, vol. 3, No. 9, pp. 779-781, Sep. 1991.
P. L. Gourley et al., "Visible, Room-Temperature, Surface-Emitting Laser Using an Epitaxial Fabry-Perot Resonator with AlGaAs/AlAs Quarter-Wave High Reflectors and AlGaAs/GaAs Multiple Quantum Wells", Appl. Phys. Lett., vol. 50, No. 18, pp. 1225-1227, May 4, 1987.
Y. Nishikawa et al., "Zn Doping Characteristics for InGaAlP Grown by Low-Pressure Metalorganic Chemical Vapor Deposition", Appl. Phys. Lett., vol. 53, No. 22, pp. 2182-2184, Nov. 28, 1988.
H. Hamada et al., "AlGaInP Visible Laser Diodes Grown on Misoriented Substrates", IEEE Journal of Quantum Electronics, vol. 27, No. 6, pp. 1483-1490, Jun. 1991.
A. Gomyo et al., "Evidence for the Existence of an Ordered State in Ga.sub.0.5 In.sub.0.5 P Grown by Metalorganic Vapor Phase Epitaxy and Its Relation to Band-Gap Energy", Appl. Phys. Lett., vol. 50, No. 11, pp. 673-675, Mar. 16, 1987.
M. Krijn, "Heterojunction Band Offsets and Effective Masses in III-V Quaternary Alloys", Semicond. Sci. Technol. vol. 6, pp. 27-31, 1991 (No month available).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Visible light emitting vertical cavity surface emitting lasers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Visible light emitting vertical cavity surface emitting lasers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Visible light emitting vertical cavity surface emitting lasers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-292862

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.