Visible light emitting diodes fabricated from soluble...

Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S099000

Reexamination Certificate

active

06534329

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to light-emitting diodes and their fabrication. More particularly, it concerns light-emitting diodes fabricated from semiconducting (conjugated) polymers which are soluble in common organic solvents, and yet more particularly to the fabrication of such diodes on flexible polymer substrates.
BACKGROUND OF THE INVENTION
Solid-state light-emitting diodes (LEDs) have found widespread application in displays, as well as in a variety of less common applications. Currently, LEDs are fabricated from conventional semiconductors; for example, gallium arsenide (GaAs), typically doped with aluminum, indium, or phosphorus. Using this technology, it is very difficult to make large area displays. In addition, the LEDs made of these materials are typically limited to the emission of light at the long wavelength end of the visible spectrum. For these reasons, there has been considerable interest for many years in the development of suitable organic materials for use as the active (light-emitting) components of LEDs. (See references 1-6). The need for relatively high voltages (i.e., voltages incompatible with digital electronics) for the onset of light emission has been a hindrance to the commercialization of LEDs fabricated from organic materials.
The utilization of semiconducting organic polymers (i.e., conjugated polymers) in the fabrication of LEDs expands the use of organic materials in electroluminescent devices and expands the possible applications for conducting polymers into the area of active light sources, (see Reference 7) with the possibility of significant advantages over existing LED technology. Controlling the energy gap of the polymer, either through the judicious choice of the conjugated backbone structure or through side-chain functionalization, should make possible the emission of a variety of colors throughout the visible spectrum.
In the prior art, Tomozawa et al (see Reference 8) disclosed diodes fabricated by casting semiconducting polymers from solution.
Also in the art, Burroughs et al (see Reference 7) disclosed a multi-step process in the fabrication of LED structures characterized as follows:
1) A glass substrate is utilized. The substrate is pre-coated with a transparent conducting layer of indium/tin oxide (ITO). This ITO coating, having high work function serves as the ohmic hole-injecting .electrode.
2) ′ A soluble precursor polymer to the conjugated polymer, poly(phenylene vinylene), PPV, is cast from solution onto the substrate as a thin, semitransparent layer (approximately 100-200 nm).
3) The precursor polymer is converted to the final conjugated PPV by heat treating the precursor polymer (already formed as a thin film on the substrate) to temperatures in excess of 200° C. while pumping in vacuum.
4) The negative, electron-injecting contact is fabricated from a low work function metal such as aluminum, or magnesium-silver alloy; said negative electrode acting as the rectifying contact in the diode structure.
The resulting devices showed asymmetric current versus voltage curves indicative of the formation of a diode, and the diodes were observed to emit visible light under conditions of forward bias at bias voltages in excess of about 14 V with quantum efficiencies up to 0.05%.
The methods of Burroughs et al, therefore, suffer a number of specific disadvantages. Because of the use of a rigid glass substrate, the resulting LED structures are rigid and inflexible. The need for heating to temperatures in excess of 200° C. to convert the precursor polymer to the final conjugated polymer precludes the use of flexible transparent polymer substrates, such as, for example, polyethyleneterephthalate, polystyrene, polycarbonate and the like, for the fabrication of flexible LED structures with novel shapes and forms. The need for heating to temperatures in excess of 200° C. to convert the precursor polymer to the final conjugated polymer has the added disadvantage of possibly creating defects in the conjugated polymer and in particular at the upper surface of the conjugated polymer which forms the rectifying contact with the low work function metal.
Thus, the ability to fabricate light-emitting diodes from organic materials and in particular from polymers, remains seriously limited.
References.
1. P. S. Vincent, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 94, 476 (1982).
2. C. W. Tang, S. A. Van Syke, Appl. Phys. Lett. 51, 913 (1987).
3. C. W. Tang, S. A. Van Syke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
4. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 55,1489 (1989).
5. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 56, 799 (1989).
6. M. Nohara, M. Hasegawa, C. Hosohawa, H. Tokailin, T. Kusomoto, Chem. Lett. 189 (1990).
7. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).
8. H. Tomozawa, D. Braun, S. D. Phillips, R. Worland, A. J. Heeger, and H. Kroemer, Synth. Met. 28, C687 (1989).
9. F. Wudl, P.-M. Allemand, G. Srdanov, Z. Ni, and D. McBranch, in Materials for Non-linear Optics: Chemical Perspectives (to be published in 1991).
10. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
11. a. T. W. Hagler, K. Pakbaz, J. Moulton, F. Wudl, P. Smith, and A. J. Heeger, Polym. Commun. (in press). b. T. W. Hagler, K. Pakbaz, K. Voss and A. J. Heeger, Phys. Rev. B. (in press).
SUMMARY OF THE INVENTION
It is accordingly an object of the present invention to overcome the aforementioned disadvantages of the prior art and, primarily, to provide light-emitting diodes fabricated from semiconducting polymers which are soluble in the conjugated form and therefore require no subsequent heat treatment at elevated temperatures.
It is additionally an object of the present invention to utilize the processing advantages associated with the fabrication of diode structures from soluble semiconductor polymers cast from solution to enable the fabrication of large active areas.
It is additionally an object of the present invention to provide light-emitting diodes fabricated from semiconducting polymers using flexible organic polymer substrates.
It is additionally an object of the present invention to provide methods for the fabrication of light-emitting diodes fabricated from semiconducting polymers which turn on at bias voltages compatible with digital electronics (i.e., at voltages less than 5 volts).
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art on examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
In one aspect this invention provides a process for fabricating light-emitting diodes (LEDs). In this embodiment the process involves a process for fabrication of light-emitting diodes which emit visible light. This process comprises the steps of:
i) precoating a substrate with a transparent conducting first layer having high work function and serving as an ohmic hole-injecting electrode;
ii) casting upon the first layer directly from solution, a thin transparent layer of a soluble conjugated polymer; and
iii) fabricating a negative, electron-injecting contact onto the conjugated polymer film. This contact is formed from a low work function metal and acts as the rectifying contact in the diode structure.
In another embodiment, an alternative process for fabricating light-emitting diodes which emit visible light is provided. This process comprises the steps of:
i) casting a free-standing, semi-transparent film of a soluble conjugated polymer from solution, said film serving as a luminescent, semiconducting polymer and simultaneously as a substrate;
ii) coating the free-standing, conjugated polymer film on one side with a tr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Visible light emitting diodes fabricated from soluble... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Visible light emitting diodes fabricated from soluble..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Visible light emitting diodes fabricated from soluble... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.