Viscous drag impeller components incorporated into pumps,...

Rotary kinetic fluid motors or pumps – Smooth runner surface for working fluid frictional contact

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S121200, C415S149100, C415S155000, C415S160000, C415S202000, C415S229000, C416S004000, C416S19800R, C416S19800R, C416S22300B

Reexamination Certificate

active

06375412

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention.
The present invention relates generally to an improved design for transferring mechanical power through the use of a fluid medium. The present invention employs an impeller system in a variety of applications including hydroelectric turbines, fluid turbines, fluid transmissions and pumps of various types.
2. Description of Prior Art.
Various forms of impeller systems have been employed in a diversity of inventions, including turbines, pumps, fans, compressors, homogenizers, as well as other devices. The common link between these devices is the displacement of fluid, in either a gaseous or liquid state.
Impeller systems may be broadly categorized as having either a single rotor assembly, such as a water pump (U.S. Pat. No. 5,224,821) or homogenizer (U.S. Pat. No. 2,952,448); or a single radially arranged multi-vaned assembly, such as a fan or blower (U.S. Pat. No. 5,372,499); or a multi-disk assembly mounted on a central shaft, as in a laminar flow fan (U.S. Pat. No. 5,192,183). Impeller systems employing vanes, blades, paddles, etc. operate by colliding with and pushing the fluid being displaced. This type of operation introduces shocks and vibrations to the fluid medium resulting in turbulence, which impedes the movement of the fluid and ultimately reduces the overall efficiency of the system. One of the inherent advantages of a multi-disc impeller system is obviating this deficiency by imparting movement to the fluid medium in such a manner as to allow movement along natural lines of least resistance, thereby reducing turbulence.
U.S. Pat. No. 1,061,142 describes an apparatus for propelling or imparting energy to fluids comprising a runner set having a series of spaced discs fixed to a central shaft. The discs are centrally attached to the shaft running perpendicular to the discs. Each disk has a number of central openings, with solid portions in-between to form spokes, which radiate inwardly to the central hub, through which the shaft runs, providing the only means of support for the discs.
Similarly, U.S. Pat. No. 1,061,206 discloses the application of a runner set similar to that described above for use in a turbine or rotary engine. The runner set comprises a series of discs which have central openings with spokes connecting the body of the disc to the central shaft. As in the aforementioned patent, the only means of support for the discs is the connection to the central shaft.
U.S. Pat. No. 5,118,961 describes an fluid driven turbine generator utilizing a single rotor having magnets secured in a receptacle shaped portion and spinning about a stationary core to produce electricity. Fluid jets drive the single rotor by impinging on a circumferential roughened surface of the receptacle shaped portion of the rotor. The present invention is distinct from the above in that it employs a multi-disc impeller system rather than a single rotor.
There is a need in the art for a more efficient means of displacing fluids and generating power from propelled fluids without introducing unnecessary turbulence to the fluid medium and loss of energy transfer through heat and vibration. The present invention alleviates the shortcomings of the art and is distinct from other pumps, turbines and transmissions. The present invention provides a compact, efficient and versatile system for driving fluids and generating power from propelled fluids.
SUMMARY OF THE INVENTION
The present invention is for the efficient transfer of mechanical power through a fluid medium. The various embodiments of the present invention exploit the natural physical properties of fluids to create a more efficient means of driving fluids as well as transferring power from propelled fluids.
The design of the discs and runner set of the Tesla pump and turbine have significant shortcomings. The discs have a central aperture with spokes radiating inwardly to a central hub, which is fixedly mounted to a perpendicular shaft. The only means of support for the discs are the spokes radiating to the central shaft. The disc design, the use of a centrally located shaft, and the means of connecting the disks to the central shaft, individually, and especially in combination, create turbulence in the fluid medium, resulting in inefficiency. As the disks are driven through a fluid medium, as in a pump, or caused to be driven by a fluid medium, as in a turbine, the spokes collide with the fluid causing turbulence, which is transmitted to the fluid in the form of heat and vibration. In addition, the spoke arrangement creates cavitation in the fluid medium causing pitting or other damage to the surfaces of other components. Furthermore, the arrangement of the runner set does not sufficiently support the discs during operation, resulting in a less efficient system. Finally, the arrangement of the shaft through the middle of the discs interferes with the natural path of the fluid causing excessive turbulence and loss of efficiency.
According to one aspect of the present invention, a Turbopump system is provided. The Turbopump system may be used to displace all forms of fluids, whether liquid or gaseous, and is equally well suited for high volume and/or high pressure applications as well as low to medium pressure applications. Within the housing of the Turbopump is an impeller assembly possessing a series of parallel flat disks arranged perpendicularly along a rotational axis to a central hub. Each disk has a central aperture, and the parallel arrangement of multiple disks creates a central cavity of the impeller assembly. The disks are arranged on the central hub with spaces between to allow fluid to be drawn through the central cavity of the impeller assembly, as well as between individual disks. Support plates are attached to the first and second ends of the impeller assembly to provide sufficient mechanical strength during operational use. Each of the disks are interconnected by means of spacers and connecting rods attached to the interior perimeter of each disk and supporting plate. The connecting rods in turn are attached to a central hub. Connected to the central hub assembly is a driving means for rotating the central hub and impeller assembly, such as a motor or some similar mechanism.
The design of the present invention has significant advantages over the prior art. The multi-disk impeller assembly possesses significantly more surface area in comparison to single rotor designs. The increased surface area in combination with viscous drag operation creates a vastly superior design. Additionally, elimination of the central shaft and creation of a central cavity within the impeller assembly contributes to efficiency. The central shaft of conventional designs impedes the natural flow of fluid through the impeller system and also contributes to turbulence and loss of energy transfer by generating heat and vibration. By employing a central hub design, a central cavity of the impeller system is created, which permits fluid to flow unobstructed through the impeller assembly, thereby reducing unnecessary friction and turbulence.
Operationally, the driven impeller assembly works in conjunction with the interior surface of the housing to create a net negative pressure which draws the fluid medium through an inlet. The pump possesses a means for rotating the impeller assembly so that the plurality of disks are rotationally driven through the fluid medium, which displaces and accelerates the fluid through viscous drag to impart tangential and centrifugal forces to the fluid with continuously increasing velocity along a spiral path, causing the fluid to be discharged from an outlet. The principle of operation is based on the inherent physical properties of adhesion and viscosity of the fluid medium, which when propelled, allows the fluid to adjust to natural streaming patterns and to adjust its velocity and direction without the excessive shearing and turbulence associated with traditional vane-type rotors or impellers.
According to the present invention, as the disks of the impeller assembly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Viscous drag impeller components incorporated into pumps,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Viscous drag impeller components incorporated into pumps,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Viscous drag impeller components incorporated into pumps,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2898868

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.