Virus-like particles for the induction of autoantibodies

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Recombinant virus encoding one or more heterologous proteins...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S194100, C424S184100, C424S144100, C424S143100, C424S159100, C424S204100, C424S147100, C424S078310, C424S133100, C530S350000, C435S472000, C435S174000, C435S235100

Reexamination Certificate

active

06719978

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to compositions and methods for stimulating a B cell immune response in vivo. Novel biological tools, therapeutics, and prophylactics comprising chimeric or conjugated virus-like particles and methods of use of the foregoing are provided for the study, treatment, and prevention of human disease.
BACKGROUND OF THE INVENTION
It is well established that host immune defenses come into play at various stages of human disease. During viral infection, for example, antibodies stimulated in response to previous immunization may neutralize incoming viruses prior to attachment and penetration of susceptible target cells. In the event that cells become infected and display virus-associated antigens on their surfaces, cellular immune responses may also be activated. In this latter case, cytotoxic T cells can kill infected cells, thereby limiting progression of the infection. These humoral and cellular immune responses are commonly mounted against infection by a wide variety of viruses, including viruses having DNA or RNA genomes and outer coats composed of protein capsids or membrane envelopes.
The fact that animals can mount vigorous immune responses to most foreign antigens without similarly responding to components of their own tissues suggested to Burnet and Fenner (
The Production of Antibodies,
Macmillan Co., Melbourne (1949)) that the immune system must have evolved some mechanism for distinguishing self from non-self. A state of self-tolerance undoubtedly exists for central antigens to which the immune system is normally exposed. (See Siskind, G.,
Fundamental Immunology
ed. W. E. Paul, Raven Press, New York, Ch. 20 (1984)). A “central antigen” is a self antigen that ordinarily is exposed to cells of the immune system, whereas a “peripheral antigen” is a self antigen that ordinarily is shielded from contact with cells of the immune system, for example by physical separation. Failure of the immune system to mount responses against certain components of the eye, brain and testes, for example, results from segregation of these tissues from the host immune system rather than from self-tolerance. Indeed, autoimmune responses can occur when the physical “barriers” that maintain these peripheral tissue antigens separate from immune surveillance are compromised. Remarkably, the vertebrate genome possesses all of the information needed to produce antibodies directed against a self antigen; and spontaneously generated antibodies to many self antigens can routinely be detected. However, these antibodies are low titer, low avidity and of the IgM class.
Several investigators believe that self-tolerance involves the immune system “learning” to distinguish self and non-self components, an event that occurs before maturing at around the time of birth. It has been speculated that exposure of the lymphoid system to self antigens during fetal development, for example, is a critical phase for developing tolerance to self antigens. According to other models, lymphocytes expressing cell surface receptors specific for the self antigen are eliminated, rendered incapable of activation, or are “tolerized” to the antigen.
The term “B cell tolerance” is often used to describe a state in which the immune system ineffectively responds to the presence of an antigen (e.g., a self antigen) or, more particularly, when the B cells of the immune system fail to mount a response to an antigen. Accordingly, an antigen that is normally exposed to B cells yet fails to induce a high titer antibody response or that is associated with a normal non-response by B cells (e.g., a self antigen) is referred to as a “tolerogen” because the immune system “tolerates” its presence. Clearly, self antigens are tolerogens but foreign antigens can also become tolerogens when B cells fail to sufficiently respond to the antigen. Some investigators believe, for example, that chronic viral infections occur (e.g., viral persistence in infants born to Hepatitis B virus (HBV) carrier mothers) because the immune system has become tolerized to viral antigens. (Takashima et al.,
Immunology,
75:398 (1992)). Tolerogens are not necessarily entire molecules but can be portions of molecules (e.g., peptide fragments of proteins), in potentially immunodominant regions of a molecule. Although investigators have had success in inducing tolerance in animals by various techniques, our understanding of ways to generate antibodies to tolerogens is in its infancy.
SUMMARY OF THE INVENTION
The inventors have discovered compositions and methods of increasing the titers of antibodies to tolerogens (e.g., self antigens and foreign antigens) over those titers routinely generated spontaneously or after conventional methods of vaccination. In several embodiments, the break in B cell tolerance is accomplished by using a support or capsomeric structure having an ordered assembly of subunits or capsid proteins joined to at least one B cell epitope of a tolerogen, wherein the tolerogen is presented in a regular, repetitive array. In some aspects of the invention, the tolerogen and the viral capsid protein are derived from different organisms, viruses, or infectious agents. The support can be a bead, a lipid membrane, or a protein polymer. The capsomeric structure can have icosohedral or helical symmetry. In desirable compositions, however, the capsomeric structure is comprised of viral capsid proteins that self-assemble to form an organized structure referred to as “virus-like particle,” or VLPs.
In some embodiments, the viral capsid proteins are hybrid molecules or are otherwise modified. Thus, some embodiments are “chimeric virus-like particles (VLPs)” and others are “conjugated virus-like particles (VLPs)”, wherein “chimeric VLPs” have a tolerogen joined to the viral capsid protein (or its homolog) by genetic engineering (e.g., creation of a tolerogen/capsid protein fusion) and “conjugated VLPs” have a tolerogen joined to the viral capsid protein (or its homolog) by way of chemical, physical or other modification of the capsid protein or tolerogen or both (e.g., biotin/streptavidin, biotin/avidin, other ligand/receptor sequences). Thus, aspects of the invention include a composition comprising a support having an ordered assembly of subunits and at least one B cell epitope of a tolerogen joined to the support so as to form a tolerogen-presenting immunogen, wherein the tolerogen-presenting immunogen displays the tolerogen in a regular, repetitive array. Other compositions of the invention comprise a capsomeric structure having a symmetrical assembly of capsid proteins and at least one B cell epitope of a tolerogen joined to the capsomeric structure so as to form a tolerogen presenting virus-like particle (VLP), wherein the tolerogen presenting VLP displays the tolerogen in an ordered, repetitive array. Another embodiment of the invention concerns an isolated complex comprising one of these compositions joined to a cell of the immune system. Further, pharmaceuticals comprising these compositions are embodiments of the invention.
Methods of generating antibodies to a tolerogen are also part of the invention. By one method, antibodies to a tolerogen are generated by identifying a subject in need of antibodies to a tolerogen and providing to the subject a sufficient amount of one of the compositions described above so as to generate antibodies to the tolerogen. Another approach involves the identification of agents that generate auto-antibodies. Accordingly, one of the compositions above is provided to a subject, antibodies are isolated from the subject, the titer of the antibodies isolated in step (b) that bind to the tolerogen are determined and the agent is identified by the ability to generate high titer antibodies. Additionally, a method of generating monoclonal antibodies to a tolerogen is within the scope of the invention. By this approach, one of the compositions described above is provided to a subject and a hybridoma is made with a B cell from the subject. Other methods include a method of enhancing the prod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virus-like particles for the induction of autoantibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virus-like particles for the induction of autoantibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virus-like particles for the induction of autoantibodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3186819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.