Virtual telephone

Telephonic communications – Special services – Locating using diverse technology

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S207030, C379S219000, C379S220010, C379S242000

Reexamination Certificate

active

06208724

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a telephone communication system and, in particular, to a device that provides a generic software interface to a digital line on one of many different types of digital phone switches. A telephone with such a generic interface is a “virtual phone” that has the flexibility to represent the majority of features of any digital phone, regardless of the switch type or the number of features in a digital phone.
The general concept of a virtual telephone has been in existence in various forms across different product lines. In some cases a virtual phone has been used to represent a specific digital phone, such as Rolm Phone 400 or a Meridian 2616. Those phones represent a superset of phones for their respective switches. In other cases a virtual phone has been used to represent only the necessary portions, or a subset, of a digital telephone.
2. Prior Art
One of the important characteristics of a telecommunication system is the ability of different interconnected components of the system to effectively communicate with each other. Many business-oriented telecommunication systems have PBX (Private Branch Exchange) switches that link internal telephones with each other and with external telephone networks.
Even though today most vendors build the PBXs around common available processors running common operating systems (such as UNIX) and use common programming languages (such as C or C++), unfortunately different vendors' switching devices use proprietary communication protocols. Thus, it is virtually impossible to integrate one vendor's switching device with other vendors' applications.
Therefore, it becomes highly desirable to provide a telecommunication system with a feature that would convert proprietary PBX or external application protocols into a common format, and thus would function as a “protocol interpreter” between proprietary switching system protocols and the protocols of various applications.
A number of solutions to that problem have been disclosed in the prior art. For example, U.S. Pat. No. 4,873,718 “Feature Telephone Integration Device” issued to Barnett et al discloses a device and method for integrating one vendor's application (a voice mail system) into a PBX environment of a different vendor. In that patent the interconnection was achieved by equipping the PBX vendor's feature phone with additional circuitry to monitor telephone communication between the PBX, the feature telephone and the external application. An obvious disadvantage of the disclosed system is its inability to provide a generic interface between many possible proprietary protocols of different PBX switching systems and an external application. The disclosed invention provided integration only between a PBX and a voice mail system, it did not provide for the possibility to integrate a PBX with a variety of different external applications. Moreover, any exchange of information about a call or a change of the status of the call occurs “one-way” only: from the PBX to the telephone set.
U.S. Pat. No. 5,440,616 provides an improvement over the device of U.S. Pat. No. 4,873,718 in the form of apparatus for interconnecting a messaging system (voice, facsimile, etc.) with a PBX which offers entirely digital transmission and provides high bandwidth and redundant transmission of control information between the messaging system and the PBX. The apparatus of U.S. Pat. No. 5,440,616 includes a digital voice terminal adapter which is a combination of hardware and software which emulates a digital feature phone and which interconnects a messaging system and a PBX to provide full integration of the messaging system with the PBX. The disclosed adapter does not, however, convert proprietary PBX or external application protocols into a common format and thus does not function as a protocol interpreter between proprietary switching system protocols and the protocols of various applications.
U.S. Pat. No. 5,255,314 “Switch Adjunct Integration Device” issued to Applegate et al discloses a device that uses multiple line appearances of one or more digital telephone lines to gather information on calls designed for an adjunct voice mail system. After receiving the required information the device transfers the calls to analog phone lines leading to the voice mail system. That device, again, provides no more than a communication tool between a PBX switch and a voice mail system. The disclosed device does not integrate any type of the known PBX switches with any type of external device via a generic interface.
SUMMARY OF THE INVENTION
Advantageously, the present invention overcomes the “protocol conversion” difficulties which existed in the prior art. The virtual phone generic interface of the present invention comprises three distinct modules: a virtual phone data structure, a program interface, and a host interface. All three modules can work independently of a specific type of integration. The data structure and the program interface software of the virtual phone are built into the embedded processor that controls the Private Branch Exchange (PBX) digital phone switching system interface integration. The interface between the switch and the virtual phone data structure is different for each integration, but once the interface is completed, it can be reused for many different types of applications. The interface between the virtual phone structures and the external application is the same regardless of the type of integration.
The implementation of the virtual phone provides for an external interface through any type of transport medium. A phone application residing on an auxiliary PC can show the current status of the virtual phone, and can also do call control. This illustrates the common external interface and also provides a method for diagnostics. The interface to the auxiliary PC is accomplished in different ways based on the system configuration. It can be done via a serial port, ISA bus, PCI bus, universal serial bus, Ethernet, or any other type of transport configurable. An internally designed protocol is used to communicate between the virtual phone and the auxiliary PC. In essence, the virtual phone acts as a protocol converter between the proprietary switch messages and the external serial interface.
The virtual phone of the present invention provides a common interface between any of the digital phone switches and any number of end devices. The virtual phone represents the current state of some theoretical phone and has buttons, lights, a hook switch, display, ringer, and anything else typical of a standard digital phone. The main component of the virtual phone is a set of structures that represent the state of the phone at any given time. The virtual phone structures can be accessed via a set of Virtual Phone Application Program Interface (VPAPI) function calls. The virtual phone status and events are transmitted externally via a custom virtual phone host interface.
When a packet is received from a switch, an abstraction layer parses the data and calls an internal VPAPI function. The internal VPAPI function is responsible for updating the virtual phone structure and passing the information about any state changes to an auxiliary PC through the virtual phone host interface. An internally designed protocol is used to provide communication between the virtual phone and the auxiliary PC through the host interface such as a standard RS232 communications port. A phone application residing on the auxiliary PC can show the current status of the virtual phone and accomplish call control tasks. So, in essence, the virtual phone functions as a “protocol interpreter” between the proprietary switch messages and the external interface.
When an event is received from the auxiliary PC, an external VPAPI function is called to update the virtual phone. The event is passed to an abstraction layer where it is converted to a command format in accordance with a specific virtual phone integration. The c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual telephone does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual telephone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual telephone will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2434772

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.