Dentistry – Orthodontics – Method of positioning or aligning teeth
Reexamination Certificate
2000-06-12
2004-05-25
Lucchesi, Nicholas D. (Department: 3764)
Dentistry
Orthodontics
Method of positioning or aligning teeth
Reexamination Certificate
active
06739869
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention is generally in the field of orthodontics.
An orthodontic treatment has the objects of moving and reorienting teeth for both functional or aesthetic purposes. In such a treatment, the orthodont places a variety of orthodontic components on the teeth including brackets, which are firmly fixed to the teeth, and other components including wires, tensioning springs, etc., which apply forces and moments on the teeth, through the brackets, thereby causing the teeth to move. A major problem facing the orthodont is to predict the final outcome of the orthodontic treatment. Another problem to focus is to define the proper placement of the brackets and to select the proper force-inducing components to best yield the desired outcome. Currently, the design and predicting of orthodontic treatment is based mainly on the orthodont's personal “look and feel” and prior experience skills. This approach is not only error prone but also varies from one individual to the other, which is obviously undesired.
There is accordingly a need in the art to provide the orthodont with a tool for visual demonstration, design or predicting of possible outcome of an orthodontic treatment. Provided by the invention are method and system thereior.
GENERAL DESCRIPTION OF THE INVENTION
In the context of the present description and the appended claims, the term “movement” or “moving” refers to repositioning teeth, reorientating teeth, or both. The term “orthodontic treatment” refers to a treatment intended to move at least one tooth; namely, an orthodontic treatment should be understood as encompassing a procedure where all or only part of the teeth (e.g. teeth of one jaw, a group of teeth in a section of a jaw, etc.) are moved. Furthermore, the term “orthodontic treatment” refers both to a treatment intended to yield movement to reach a final, close to ideal outcome of the treatment as well as to an interim treatment yielding an interim position and orientation of the teeth. In other words, the term “orthodontic treatment” mentioned herein encompasses both a treatment from an initial stage, i.e. before the treatment began, through to a final stage; a treatment from an initial stage to an interim stage; as well as to a treatment from an interim stage to another interim or final stage.
The term “virtual treatment” (referred to also, occasionally as virtual orthodontic treatment) as used herein means an orthodontic treatment as simulated on a computer. A virtual treatment may use virtual components (i.e. ‘component’ in the virtual computer environment) such as brackets, wires, tensioning springs or rubber bands, corresponding to real components as used in a real life orthodontic treatment, but may also use components which are not normally used in real-life treatment; and also components used in real-life treatment but are used in the virtual treatment in a different manner. Thus, for example, a virtual orthodontic treatment may use wires which are not normally used in a real life orthodontic treatment; may use wires of a cross-section other than such used in a real-life orthodontic treatment; may combine wires and brackets in a manner whereby the brackets are biased towards a rotational movement around the axis of the wire which is usually not performed in a real-life orthodontic treatment; etc. It will therefore be understood that the resul of virtual treatment is not necessarily the same as the actual real treatment.
In the following, a method and system for virtual treatment is disclosed. Manual systems may be used by an orthodont to examine various alternative treatment paradigms and compare them to one another so as to see which one will yield the best result. For example, the orthodont may compare a treatment where one or more teeth are extracted to another treatment where all teeth are left in tact In addition, the system and method of the invention may allow also the orthodont to select the orthodontic components which he will eventually use in the real-life treatment, to predict the course, time and cost of the treatment. This will all be clarified from the disclosure below.
It will also become clear from the following disclosure, the orthodontic treatment may be made to resemble a real-life orthodontic treatment, although not necessarily so, and occasionally, the orthodontic treatment may use components or may apply a set of rules which are not directly applicable to real-life treatment.
The present invention provides, by one of its aspects, a method for virtual orthodontic treatment, comprising:
(a) providing a first virtual three-dimensional image indicative of a three-dimensional (3D) model of teeth from at least one jaw, the model being manipulable so as to allow its viewing from a desired direction;
(b) selecting a virtual set of orthodontic components, and associating the components with the teeth of said first image so as to obtain a second image of said 3D model with said components associated therewith;
(c) using a set of rules, including at least one rule, defining the effect of said set of components on said teeth, computing the manner of movement of the teeth as a result of said effect, so as to obtain a third image comprising the teeth model following the virtual treatment.
The set of orthodontic components selected in step (b) includes components which are capable of imparting movement between at least two teeth. For example, the set may include at least two brackets and a wire, may include rubber bands or tensioning springs for forcing two teeth one against the other, etc. Typically, the set of orthodontic components includes for each jaw, typically, but not necessarily, about 5 to about 10 brackets in the case of a child's jaw, and between about 5 to about 16 in the case of an adult's jaw.
The set of orthodontic components may be represented as an image which is similar to the image of the real orthodontic component, as seen in real life. However, orthodontic component may also be represented by any other graphic representations. For example, the wire may be represented by a straight or curved line; a bracket may be represented by a rectangular frame, etc.
In accordance with some embodiments of the invention, the set of components includes brackets and a wire and the rule dictates that eventually all slots which receive the wire will be aligned with the wire where the latter is arranged as a splined curve indicative of the desired result of the virtual treatment In other words, in this case the wire represents the desired results of alignment of all slots following the virtual treatment Thus, by such an embodiment a component which represents a real-life component, i.e. a wire, is used in a different manner than in a real-life treatment in that it dictates the result of the treatment. This embodiment thus illustrates a general principle in some embodiments of the invention that while in a real-life treatment components act in combination to apply forces on teeth and the movement is a result of such applied forces, in a virtual treatment of the invention, the components may also dictate the final result. However, this does not exclude a possibility, in accordance with some other embodiments of the invention, where the movement of the teeth is dictated by forces and moments, which in this case are the set of rules, which act on the teeth under influence of the different components.
Thus, as will be appreciated, occasionally, the component and the set of rules may be associated with one another. Taking the previously illustrated embodiment as an example, the component, which is a wire defining a splined curve, has with it an associated rule dictating that the brackets, with the associated teeth, should move, vertically, but possibly also horizontally, so that all brackets will eventually be positioned such that their respective slots are on the splined curve defined by the wire. In addition to the desired final result, the set of rules may also stipulate the computational algorithm defining the manner of movement of th
Kopelman Avi
Taub Eldad
Berkowitz Marvin C.
Cadent Ltd.
Lucchesi Nicholas D.
Nath Gary M.
Nath & Associates PLLC
LandOfFree
Virtual orthodontic treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Virtual orthodontic treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual orthodontic treatment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3203309