Virtual instrument pilot: an improved method and system for...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S011000, C701S014000, C701S013000, C701S033000, C701S122000, C345S001300, C345S215000, C340S003500, C340S500000, C340S870030, C340S947000, C340S948000, C340S979000, C340S971000, C340S999000, C340S975000, C340S973000, C342S357490, C342S401000, C342S049000, C434S029000, C434S038000, C434S043000

Reexamination Certificate

active

06405107

ABSTRACT:

TECHNICAL FIELD
This invention describes a safer system of control and navigation of fixed wing aircraft. This development derives its accuracy from Satellite Global Positioning Systems (GPS). The Global Positioning Systems are generated by orbiting satellites which are located high above the earth. In some instances, a combination of satellites and supplementary ground systems, such as Wide Area Navigation Systems (WAAS), Differential GPS (DGPS), and the like may be employed to improve the overall navigation accuracy. The use of GPS systems in place of the usual radar and radio methods of navigation provides greatly improved four dimensional accuracy and simplicity of derived Instrument Landing Systems (ILS). The GPS derived ILS system of the present invention results in improved and more reliable flight safety over conventional ILS systems. In addition, a plurality of conventional flight and navigational instruments are replaced by a single compound instrument which provides accurate flight information in one display which is easy to understand. The flight instruments operate without vacuum or moving parts, eliminating the primary failure mechanisms for conventional devices.
BACKGROUND OF THE INVENTION
Note: When referencing to the pilot as a “he”, it is understood that pilots can be of either sex. The terminology used, therefore, is generic in nature, and signifies any pilot.
When pilots learn to fly an aircraft, they first learn to fly by “Visual Flight Rules” (VFR). Under these rules, flight is limited to those weather conditions where good visibility exists. The reliance on flight instruments is minimal. Slowly, the pilot learns to handle his aircraft and to read and to rely on the other instruments on the control panel. He learns how to mentally relate these instrument readings to what the actual aircraft is doing. For example, by looking out the window, the pilot can tell which direction is toward the ground, but he usually cannot tell if the aircraft is actually going up or going down by feel or by sight, unless the relative changes in elevation are large. People who have flown over water can attest to the difficulty of determining how far above the water the aircraft is flying. Conventionally, a vertical velocity indicator instrument tells the pilot if the aircraft is going up or down and how fast the aircraft is gaining or losing altitude. The altimeter instrument tells the pilot how high he is above sea level. Airport elevations are reported as feet above sea level, and the altimeter instrument is vital in maintaining traffic separation and when making aircraft landings.
As the fledgling pilot advances in his art, he is able to depend upon his instruments to a greater extent. The pilot develops the ability to envision the flight of his aircraft in his mind.
Eventually, after examination by his instructor, the pilot becomes certified to fly under “Instrument Rules” (IFR). It is important to note that flying by instruments is not merely a convenience. Flying by instrument is actually a life-saving capability. Instruments are designed to assist the pilot in flying his aircraft in inclement weather, and under other adverse conditions. Unfortunately many pilots are intimidated by the instrument rating process and fail to learn this important flying skill.
Although the instruments eventually become the pilot's mainstay, they can and do fail. As a result, the pilot is usually taught how to fly his aircraft with one or more instruments malfunctioning. The instructor achieves this by covering the instrument of his choice and then exhorting the pilot to fly without the selected instrument. However, instrument availability would be a preferred solution.
If, for example, inclement weather closes in, and the pilot finds himself in the clouds, with little or no visibility, the only means of control that he has over his flight is by means of the aircraft instrumentation. Safe flight is then often not possible without dependence upon navigation and control instruments. Furthermore, if there is an instrument failure while the pilot is in the clouds or in a fog, the pilot may become disoriented and such situations often prove to be fatal.
Aware of these problems, engineers have worked to improve the science of flight. In order to improve the safety of flying, engineers have developed radio and radar based instrumentation systems which enable a pilot to land his aircraft safely even when conditions are far from ideal, or when the pilot is unfamiliar with the airport at which he is attempting to land. Such systems are called “Instrument Landing systems” (ILS), and they have been developed to make landing safer and to save lives. These ILS systems are replaced by the present invention which does not depend upon radio or radar navigation.
The directional and instrument landing systems which were initially developed were very primitive by today's standards. Instrument Landing Systems (ELS) have improved steadily over the past decades. These newer systems employ radar position sensing, multiple phased arrays, radar altimeters, radio transponders, Infra red imaging, holograms and other devices. Instead of listening to a tone or series of tones, the pilot now has a cross-hair display. In most ELS systems, there is a set of “cross hairs” which move up or down or to the right and left to indicate where the pilot's aircraft is located relative to the center of the “beam”. This system is called a Glide Slope Indicator. By keeping the cross hairs centered in the display as he descends, the pilot knows that he is flying “On the Beam”, correcting for errors in horizontal position and for errors in elevation. Thus, the pilot can execute a safe landing at a controlled airport. These systems are exemplified in the Prior Art described herein.
During the past decade, however, engineers have developed extremely accurate Global Positioning Systems (GPS). These location systems do not depend upon conventional radar or radio signals, but in their place, multiple satellites send high frequency signals to earth. These satellites are configured as a four dimensional Global Positioning System (GPS). Specialized localizers which are tuned to satellite frequencies can tell an operator precisely where and when he is on the surface of the earth with an accuracy of a few meters and less than a millisecond.
Present “inexpensive” GPS systems exhibit an accuracy of position of approximately 100 feet in all directions 95% of the time. WAAS and DGPS systems improve the accuracy down to the 25 foot range. Modern military GPS systems exhibit far greater accuracies. It is anticipated that the present invention will be able to be enhanced as more accurate GPS systems become available to the general public.
It is well known to those who fly, that modem GPS systems are very accurate. These systems are rapidly replacing LORAN and other systems which are presently used for navigation, but do not provide altitude information.
The present invention, which the inventor calls a “Virtual Instrument Pilot” utilizes the aforementioned Global Positioning Systems to tell the pilot precisely where he is located with respect to actual spatial positions on the surface of the earth and in the air. The present invention, however, goes further than simply using the GPS as a navigational aid. The system described herein uses the GPS as an input source by which a complete functional aircraft control system can be accomplished in a single unified instrument and displayed upon a single display, which is readily understood by the pilot.
The reliability of the present invention stems from the avoidance of any moving parts or parts which are exposed to the environment during data acquisition. The data input is also isolated from the rest of the aircraft instrumentation. The present invention provides the equivalent of most of the needed flight instruments for Attitude determination, navigational Aids, and route control functions of modern avionics in a single, reliable instrument. This minimizes the instrument visual scan by the pilo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual instrument pilot: an improved method and system for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual instrument pilot: an improved method and system for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual instrument pilot: an improved method and system for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.