Virtual display screen system

Computer graphics processing and selective visual display system – Image superposition by optical means – Operator body-mounted heads-up display

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06198462

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to information systems, and, more particularly, to computerized information display systems using hardware and software to make a video display screen appear to be arbitrarily large or two- or three-dimensional to a viewer.
2. Description of the Related Art
Existing workstation environments offer a single two dimensional display surface coupled with sophisticated window systems. The user is constrained to view the stationary display surface and may choose to pan or scroll images around on the physical screen using a software package, for example, X windows. These panning or scrolling packages are controlled typically through the use of a mouse. They do not provide the appearance of a larger display surface and do not alleviate the problem of clutter on a physical display. Resolution is limited to the capability of the physical display, which may be excellent (approximately 2 arc minutes) over a small viewing angle of approximately 30 degrees.
Existing head mounted displays fall into several categories. Low cost, low resolution commercially available Head-mounted stereoscopic Displays (HMDs) have been applied to visualization of computer generated three dimensional virtual worlds but not to sophisticated analysis problems such as air traffic control or tactical situation assessment. High cost, high resolution systems are primarily used for training and flight simulation. They have not been integrated with traditional workstation environments and window systems such as X windows.
A commercial product on the market, WideAngle by TigerSoftware, offers a software solution to the problem of user orientation to a multi-window display. The WideAngle software shows an iconic representation of 9 screens of windows, and allows the user to select which desktop screen to blow up to full size. The implementation is limited to the size of the standard computer monitor. The displays of the other desktops are iconized, that is, the details of each window are hidden. Only the name of the application running in each window is shown in the icon, so if there are 5 documents open in editor windows, all that would show in the overall view would be the name of the editor 5 times. This is not intuitive or useful. The present invention, rather than displaying an icon for each window, shows the actual window at full size. It can be seen with peripheral vision, and the documents read as if they were on the main monitor.
A similar capability for Unix based workstations is built on top of X windows and is called the virtual window manager, tvtwm, and is provided as a sample client for X windows. There is no current interface through the virtual window manager to head tracking or head mounted or head coupled displays, although Hewlett Packard's desktop environment, called Vue, is similar and is being adopted by many UNIX manufacturers as part of the common desktop environment.
OBJECTS AND SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a computerized information display system using hardware and software to make a video display screen appear to be arbitrarily large or two- or three-dimensional to a viewer.
It is still another object of the present invention to provide a user with a more naturally intuitive method of processing visual and analytical data by presenting such data to the user in a user controlled virtual metaphor freed from the constraints of a physical flat screen display.
Generally, the present invention may be embodied in a computerized data display system which includes a computer operating in accord with a windowing operating system, such as X-Windows, for the display and control of a plurality of data windows on at least one display screen of at least one display device. The data windows are displayed on the display screen in a spatial relation corresponding to the field of view seen from a preselected viewing location selected by means of a control signal provided as an input to the computer. A head coupled image display device, is adapted to display the data windows appearing on each display screen separately to each eye of a user to create a binocular virtual screen image to the user that has a virtual screen size independent of the size of the physical display screen. A sensor that tracks the position of the user's head is coupled to the computer, and is adapted to selectively change the selected viewing location.
By using more than one display source, a stereoscopic virtual image may be presented to the user through the head coupled image display device worn by the user.
In summary then, the present invention is a novel combination of advanced hardware and software that enables an entire new paradigm for user interaction with computers by enlarging the display area to an arbitrary size and providing the means for new modalities of interaction. It is build upon standard X windows software and provides interface capability for use with a head mounted display and head tracker. This capability, as well as the design and construction of novel methods for interaction and visualization with the virtual screen of the present invention has been reduced to practice in a prototype system.
The virtual screen of the present invention has wide ranging applications. Three example applications that can benefit from the virtual screen of the present invention include: command and control products, including air traffic control; earth and science data analysis systems; and training and visualization systems for battlefield management. In addition, there are opportunities for use of the virtual screen of the present invention in many new business areas including medical data visualization.
The invention is described as a combination of hardware and software that will make a video display screen appear to be arbitrarily large. One novel aspect of the invention is the combined use of a window system, physical display hardware in the form of a head-mounted stereoscopic display (HMD), head tracking, and user interface control software to produce a virtual screen of apparently large size. This system also allows the user to place windows or other data in any three dimensional position within the working environment of the head tracking and control software. The virtual screen of the present invention is not limited to a two dimensional or perspective view of data, but may also represent three dimensional stereoscopic imagery in the form of left and right eye views to the user.
If a see-through HMD is used instead of a solid surface HMD, the user's standard computer monitor can be used to show the main window, and “offscreen” windows can be arranged at lower resolution around the computer monitor. This see-through variant still allows the user to place windows in an arbitrarily large virtual display, utilizing the standard computer monitor while allowing the user to see his immediate surroundings. The HMD can be lower resolution since it is used more for organization purposes than for reading. Peripheral windows would be moved onto the main computer monitor for close inspection.
The purpose of the virtual screen is to free the user from the physical limitations of a single display device such as a standard CRT monitor. Traditional display surfaces provide a small window into the actual computer memory through a single CRT with approximately 1K×1K pixel resolution. From a distance of one meter, a typical 19 inch display subtends a visual angle of approximately 26 degrees. Consequently, the user must place multiple windows on the display, one on top of the other, thus obscuring all but the last window used. With the virtual screen, the user has the freedom to place windows in any location in three dimensional space, effectively increasing the visual angle of the display up to 180 degrees or more.
The advantages of the invention are numerous and include:
1. Reducing clutter in window-based analysis systems;
2. Increasing productivity through a more intuitive displ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual display screen system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual display screen system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual display screen system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527960

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.