Multiplex communications – Pathfinding or routing – Switching a message which includes an address header
Reexamination Certificate
1998-11-27
2003-11-04
Nguyen, Chau (Department: 2663)
Multiplex communications
Pathfinding or routing
Switching a message which includes an address header
C370S395400
Reexamination Certificate
active
06643293
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to data communications networks utilizing ATM technology and more particularly to apparatus and methods for scheduling/shaping multi-service category cell traffic onto virtual-path connections while providing fair share arbitration between aggregating virtual channel connections.
BACKGROUND OF THE INVENTION
Asynchronous transfer mode (ATM) technology is rapidly being recognized as the technology of choice for broadband data communications. ATM cells having a fixed number of bytes can efficiently accommodate multimedia traffic such as video, voice and data.
ATM cell traffic between nodes in an ATM network is carried on what are known as virtual connections (VC). Traffic from end user to end user through a plurality of intermediate nodes is carried on virtual channel connections (VCC). A VCC on a particular link is uniquely identified by the combination of virtual path identifier (VPI) and virtual channel identifier (VCI) fields in the ATM cell headers. Since traffic from several sources may have a common destination it is known to combine virtual channel connections onto a virtual path connection (VPC) in order to simplify the processing of traffic through the network. A VPC on a particular link is uniquely identified by the VPI field in the ATM cell header. When virtual channel connections are aggregated onto a virtual path connection, the individual virtual channel connections are essentially transparent to the intermediate ATM nodes and this allows a simpler networking model and higher manageability.
A virtual path connection is defined as a logical grouping of multiple virtual channel connections into one virtual connection. An implicit logical aggregation of VCCs into a VPC is said to have occurred when the outgoing VCCs all acquire the same common VPI value. Typically, such aggregation occurs at the egress port of an ATM switch where multiple VCCs from multiple ingress ports converge. These aggregating VCCs might have different VPI and VCI values as determined at call setup or network planning time. The egress port of the ATM switch is typically equipped with a cell header translation function. Such a function is capable of translating the incoming VPI and VCI values into a new set of VPI and VCI values. It is this function that accomplishes the aforementioned implicit logical aggregation. When the various VPI and VCI values on the various aggregating VCCs all translate into a common VPI value, a virtual path connection is formed. Note that the VCI value is carried transparently end-to end within a VPC. It is, therefore, important for the translation function to translate the incoming VCI values into a mutually exclusive set of VCI values. Such mutual exclusivity allows each underlying VCC to be uniquely identified at the terminating end of the VPC. At that point, the VPC is segmented by simply switching and processing each underlying VCC as an individual connection. The combination of an egress aggregation function together with the ingress segregation function on a bi-directional port is referred to as the virtual path termination point (VPTP).
Although the aggregation of virtual channel connections onto a common path simplifies traffic management, concerns have been expressed that individual virtual channel connections may not all be treated fairly when aggregated onto a virtual path connection. Demirtjis and Petr (IEEE IC3N, 1995 “How to Encourage Cheating with Virtual Path Policing in ATM Networks”) have found that virtual channel connections which are in compliance with predefined transmission parameters may be adversely affected by non-compliant traffic when aggregated onto a virtual path. U.S. Pat. No. 5,629,928 which issued May 13, 1997 to Calvignac et al discloses one technique for controlling traffic flow in a virtual path communication system wherein queues allocated as needed from a pool of free queues are used to store all incoming data cells having the same virtual channel identifier.
SUMMARY OF THE INVENTION
The present invention seeks to provide shaping of virtual path traffic through an ATM network utilizing an arbitration technique.
Therefore, in accordance with a first aspect of the present invention there is provided a device for scheduling virtual channel connections carrying cell traffic of different categories of service onto a virtual path connection comprising: aggregating means for aggregating virtual channel connections of similar categories of service into a single cell stream.
In accordance with a second aspect of the present invention there is provided, in an ATM data communications network utilizing virtual channel connections wherein the virtual channel connections are aggregated at an aggregation point onto virtual path connections, an apparatus for shaping ATM cell traffic comprised of various categories of service onto the virtual path connection, the apparatus comprising: queuing means for queuing cells from each of the virtual channel connections; arbitration means to arbitrate between the virtual channel connection traffic; and a virtual path connection shaper to determine egress emission time of cells from the arbitration means onto the virtual path connection.
In a preferred embodiment of this aspect of the invention virtual channel connections carrying the various categories of service, as defined by the ATM Forum, are queued separately. Like-service-category virtual channel connection queues are grouped into per-VC groups. An arbitration scheme arbitrates within each per-VC group and another arbitration scheme arbitrates between per-VC groups with like categories of service.
In accordance with a further aspect of the present invention there is provided in an ATM data communications network having virtual channel connections channel aggregated at an aggregation point onto virtual path connections, a method for fairly shaping ATM cell traffic comprised of various categories of service and quality of service parameters onto the virtual path connection, the method comprising the steps of: queuing the virtual channel connection cell traffic in separate queuing buffers; arbitrating between the separate queuing buffers utilizing an arbitration means; and shaping the arbitrated cell traffic with a virtual path connection shaper in order to fairly emit the cell traffic onto the virtual path connection.
In a preferred embodiment of this aspect of the invention the shaper determines the cell egress times in accordance with certain traffic descriptors.
REFERENCES:
patent: 5694121 (1997-12-01), Krause et al.
patent: 6011775 (2000-01-01), Bonomi et al.
patent: 6163542 (2000-12-01), Carr et al.
J. Rexford, A. Greenberg, and F. Bonomi. Hardware-Efficient Fair Queueing Architecture for High-Speed Networks. 1996 IEEE. pp. 638-646.*
S. Fahmy, R. Jain, B. Vandalore, and R. Goyal. A Framework for Virtual Channel onto Virtual Path Multiplexing in ATM-ABR. 2000 IEEE. pp. 1724-1730.
Carr David Walter
Lee Denny L. S.
(Marks & Clerk)
Alcatel Canada Inc.
George Keith M.
LandOfFree
Virtual connection shaping with hierarchial arbitration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Virtual connection shaping with hierarchial arbitration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual connection shaping with hierarchial arbitration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3152794