Viral variants and methods for detecting same

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S235100

Reexamination Certificate

active

06555311

ABSTRACT:

The present invention relates generally to viral variants exhibiting reduced sensitivity to particular agents and/or reduced interactivity with immunological reagents. More particularly, the present invention is directed to hepatitis B variants exhibiting complete or partial resistance to nucleoside analogues and/or reduced interactivity with antibodies to viral surface components. The present invention further contemplates assays for detecting such viral variants which assays are useful in monitoring anti-viral therapeutic regimes.
Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.
Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising” or the term “includes” or variations thereof, will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers. In this regard, in construing the claim scope, an embodiment where one or more features is added to any of claim is to be regarded as within the scope of the invention given that the essential features of the invention as claimed are included in such an embodiment.
Specific mutations in an amino acid sequence are represented herein as “Xaa
1
nXaa
2
” where Xaa
1
is the original amino acid residue before mutation, n is the residue number and Xaa
2
is the mutant amino acid. The abbreviation “Xaa” may be the three letter or single letter amino acid code. The amino acid residues for Hepatitis B virus DNA polymerase are numbered with the residue methionine in the motif Tyr Met Asp Asp (YMDD) (SEQ ID NO: 30) being residue number 550. In the priority document, Australian Patent Application No. PO3519, filed Nov. 8, 1996, the same methionine was designated residue 530. The amino acid residues for the DNA polymerase referred to in this specification have been re-numbered accordingly.
Hepatitis B Virus (HBV) can cause debilitating disease conditions and can lead to acute Liver failure. HBV is a DNA virus which replicates via an RNA intermediate and utilizes reverse transcription in its replication strategy (1). Thc HBV genome is of a complex nature having a partially double stranded DNA structure with overlapping open reading frames encoding surface, core, polymerase and X genes. The complex nature of the HBV genome is represented in FIG.
1
.
The presence of an HBV DNA polymerase has led to the proposition that nucleoside analogues could act as effective anti-viral agents. Examples of nucleoside analogues currently being tested are penciclovir and its oral form famciclovir (2, 3, 4, 5) and lamivudine (6,7). There is potential for such agents to be used in the treatment of chronic HBV infection.
Peniciclovir has been recently shown to have potent inhibitory activity against duck HBV DNA synthesis in vitro and has been shown to inhibit HBV DNA polymerase-reverse transcriptase activity in vitro (8,9). Similarly, oral famiciclovir has been demonstrated to inhibit intra-hepatic replication of duck HBV virus in vivo (10). In man, famciclovir has been shown to reduce HBV DNA replication in a patient with severe hepatitis B following orthotopic liver transplantation (OLT) (11).
In work leading up to the present invention, nucleoside analogue antiviral therapy was used to control severe post-OLT recurrence of HBV infection (12). Long term therapy is mandatory where patients are immunosuppressed and the rate of HBV replication is very high. However, under such conditions, as with any long term chemotherapy of infectious agents, there is a potential for development of resistance or reduced sensitivity to the therapeutic agents employed.
In accordance with the present invention, the inventors have identified variants of HBV with mutations in the HBV DNA polymerase gene which to varying extents reduce the sensitivity of HBV to nucleoside analogues. The identification of these HBV variants is important for the development of assays to monitor nucleoside analogue therapeutic regimes and to screen for agents which can mask the effects of the mutation. In addition, since the HBV genome comprises a series of overlapping open reading frames, a nucleotide mutation in one open reading frame can affect translation products in another open reading frame. In further accordance with the present invention, the inventors have observed mutations which reduce the interactivity of immunological reagents, such as antibodies and immune cells, to viral surface components. Such viral variants are referred to herein as “escape mutants” since they potentially escape existing immunological memory.
Accordingly, one aspect of the present invention is directed to a variant of an isolated DNA virus which replicates via an RNA intermediate wherein said variant comprises a nucleotide mutation in a gene encoding a DNA polymerase resulting in at least one amino acid addition, substitution and/or deletion to said DNA polymerase.
Another aspect of the present invention provides a variant of an isolated DNA virus which replicates via an RNA intermediate wherein said variant comprises a nucleotide mutation in a gene encoding a viral surface component resulting in at least one amino acid addition, substitution and/or deletion in said viral surface component.
Still a further aspect of the present invention is directed to a variant of an isolated DNA virus which replicates via an RNA intermediate at least wherein said variant comprises a nucleotide mutation in an overlapping portion of at least two open reading frames resulting in an amino acid addition, substitution and/or deletion to translation products of said open reading frames.
Preferably, the DNA virus is a hepatitis virus or a related virus and is most preferably HBV.
A “related virus” in accordance with the present invention is one related at the genetic, immunological, epidemiological and/or biochemical levels.
Preferably, the mutation in the DNA polymerase results in decreased sensitivity of the HBV to a nucleoside analogue.
Preferably, the mutation in the viral surface component reduces the interactivity of immunological reagents such as antibodies and immune cells to the viral surface component.
Most preferably, the viral surface component is a viral surface antigen. The reduction in the interactivity of immunological reagents to a viral surface component generally includes the absence of immunological memory to recognise or substantially recognise the viral surface component.
A viral variant may, in accordance with a preferred aspect of the present invention, carry mutation only in the DNA polymerase or the surface antigen or may carry a mutation in both molecules. The term “mutation” is to be read in its broadest context and includes a silent mutation not substantially affecting the normal function of the DNA polymerase or surface antigen or may be an active mutation having the effect of inducing nucleoside analogue resistance or an escape mutant phenotype. Where multiple mutations occur in accordance with the present invention or where multiple phenotypes result from a single mutation, at least one mutation must be active or the virus must exhibit at least one altered phenotype such as nucleoside analogue resistance or reduced immunological interactivity to the surface antigen.
Regions of the HBV polymerase show amino acid similarity with other RNA-dependent DNA polymerases and RNA-dependent polymerases (13). In this specification, reference is made to the conserved regions defined by Poch et al (13) as domains B and C.
Preferably, the mutation results in an altered amino acid sequence in the B domain and/or C domain or regions proximal thereto of the HBV DNA polymerase. The present invention does not extend to a mutation alone in the YMDD (SEQ ID NO:30) motif of the C domain of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Viral variants and methods for detecting same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Viral variants and methods for detecting same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Viral variants and methods for detecting same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3004585

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.