Viral material and nucleotide fragments associated with...

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S185100, C424S187100, C424S199100, C435S091100, C435S091330, C530S300000, C530S350000, C536S023720

Reexamination Certificate

active

06579526

ABSTRACT:

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) the cause of which remains as yet unknown.
Many studies have supported the hypothesis of a viral aetiology of the disease, but none of the known viruses tested has proved to be the causal agent sought: a review of the viruses sought for several years in MS has been compiled by E. Norrby (1) and R. T. Johnson (2).
Recently, a retrovirus different from the known human retroviruses has been isolated in patients suffering from MS (3, 4, and 5). The authors were also able to show that this retrovirus could be transmitted in vitro, that patients suffering from MS produced antibodies capable of recognizing proteins associated with the infection of leptomeningeal cells by this retrovirus, and that the expression of the latter could be strongly stimulated by the immediate-early genes of some herpes-viruses (6).
All these results point to the role in MS of at least one unknown retrovirus or of a virus having reverse transcriptase activity which is detectable according to the method published by H. Perron (3) and qualified as “LM7-like RT” activity. The content of the publication identified by (3) is incorporated in the present description by reference.
Recently, the Applicant's studies have enabled two continuous cell lines infected with natural isolates originating from two different patients suffering from MS to be obtained by a culture method as described in the document WO-A-93/20188, the content of which is incorporated in the present description by reference. These two lines, derived from human choroid plexus cells, designated LM7PC and PLI-2, were deposited with the ECACC on Jul. 22nd 1992 and Jan. 8th 1993, respectively, under numbers 92072201 and 93010817, in accordance with the provisions of the Budapest Treaty. Moreover, the viral isolates possessing LM7-like RT activity were also deposited with the ECACC under the overall designation of “strains”. The “strain” or isolate harboured by the PLI-2 line, designated POL-2, was deposited with the ECACC on Jul. 22nd, 1992 under No. V92072202. The “strain” or isolate harboured by the LM7PC line, designated MS7PG, was deposited with the ECACC on Jan. 8th 1993 under No. V93010816.
Starting from the cultures and isolates mentioned above, characterized by biological and morphological criteria, the next step was to endeavour to characterize the nucleic acid material associated with the viral particles produced in these cultures.
The portions of the genome which have already been characterized have been used to develop tests for molecular detection of the viral genome and imunoserological tests, using the amino acid sequences encoded by the nucleotide sequences of the viral genome, in order to detect the immune response directed against epitopes associated with the infection and/or viral expression.
These tools have already enabled an association to be confirmed between MS and the expression of the sequences identified in the patents cited later. However, the viral system discovered by the Applicant is related to a complex retroviral system. In effect, the sequences to be found encapsidated in the extracellular viral particles produced by the different cultures of cells of patients suffering from MS show clearly that there is coencapsidation of retroviral genomes which are related but different from the “wild-type” retroviral genome which produces the infective viral particles. This phenomenon has been observed between replicative retroviruses and endogenous retroviruses belonging to the same family, or even heterologous retroviruses. The notion of endogenous retroviruses is very important in the context of our discovery since, in the case of MSRV-1, it has been observed that endogenous retroviral sequences comprising sequences homologous to the MSRV-1 genome exist in normal human DNA. The existence of endogenous retroviral elements (ERV) related to MSRV-1 by all or part of their genome explains the fact that the expression of the MSRV-1 retrovirus in human cells is able to interact with closely related endogenous sequences. These interactions are to be found in the case of pathogenic and/or infectious endogenous retroviruses (for example some ecotropic strains of the urine leukaemia virus), and in the case of exogenous retroviruses whose nucleotide sequence may be found partially or wholly, in the form of ERVs, in the host animal's genome (e.g. mouse exogenous mammary tumor virus transmitted via the milk). These interactions consist mainly of (i) a trans-activation or coactivation of ERVs by the replicative retrovirus (ii) and “illegitimate” encapsidation of RNAs related to ERVS, or of ERVs—or even of cellular RNAs—simply possessing compatible encapsidation sequences, in the retroviral particles produced by the expression of the replicative strain, which are sometimes transmissible and sometimes with a pathogenicity of their own, and (iii) more or less substantial recombinations between the coencapsidated genomes, in particular in the phases of reverse transcription, which lead to the formation of hybrid genomes, which are sometimes transmissible and sometimes with a pathogenicity of their own.
Thus, (i) different sequences related to MSRV-1 have been found in the purified viral particles; (ii) molecular analysis of the different regions of the MSRV-1 retroviral genome should be carried out by systematically analyzing the coencapsidated, interfering and/or recombined sequences which are generated by the infection and/or expression of MSRV-1; furthermore, some clones may have defective sequence portions produced by the retroviral replication and template errors and/or errors of transcription of the reverse transcriptase; (iii) the families of sequences related to the same retroviral genomic region provide the means for an overall diagnostic detection which may be optimized by the identification of invariable regions among the clones expressed, and by the identification of reading frames responsible for the production of antigenic and/or pathogenic polypeptides which may be produced only by a portion, or even by just one, of the clones expressed, and, under these conditions, the systematic analysis of the clones expressed in the region of a given gene enables the frequency of variation and/or of recombination of the MSRV-1 genome in this region to be evaluated and the optimal sequences for the applications, in particular diagnostic applications, to be defined; (iv) the pathology caused by a retrovirus such as MSRV-1 may be a direct effect of its expression and of the proteins or peptides produced as a result thereof, but also an effect of the activation, the encapsidation or the recombination of related or heterologous genomes and of the proteins or peptides produced as a result thereof; thus, these genomes associated with the expression of and/or infection by MSRV-1 are an integral part of the potential pathogenicity of this virus, and hence constitute means of diagnostic detection and special therapeutic targets. Similarly, any agent associated with or cofactor of these interactions responsible for the pathogenesis in question, such as MSRV-2 or the glyotoxic factor which are described in the patent application published under No. FR-2,716,198, may participate in the development of an overall and very effective strategy for the diagnosis, prognosis, therapeutic monitoring and/or integrated therapy of MS in particular, but also of any other disease associated with the same agents.
In this context, a parallel discovery has been made in another autoimmune disease, rheumatoid arthritis (RA), which has been described in the French Patent Application filed under No. 95/02960. This discovery shows that, by applying methodological approaches similar to the ones which were used in the Applicant's work on MS, it was possible to identify a retrovirus expressed in RA which shares the sequences described for MSRV-1 in MS, and also the coexistence of an associated MSRV-2 sequence also described in MS. As regards MSRV-1, the sequences detected in commo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Viral material and nucleotide fragments associated with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Viral material and nucleotide fragments associated with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Viral material and nucleotide fragments associated with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.