Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1997-10-08
2001-05-01
Liang, Regina (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S182000, C345S182000
Reexamination Certificate
active
06225978
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a video processing system having a facility for simulating three dimensional movement of a live video picture.
BACKGROUND OF THE INVENTION
video processing machines for simulating three dimensional movement of a live video picture are known. Hitherto, the controls for such machines have included switching devices for selecting operations and movement detectors, such as levers and tracker balls, for defining the temporal nature of the selected effect. These controls provide a means by which a user of the machine can among other things achieve the effect of apparent three dimensional movement of for example live video pictures on a display screen. However, such controls are limited in that multiple actuations of different levers and switches together with movement of the tracker ball are required in order to achieve the desired effect. Thus, efficient use of the machine requires a high level of experience and dexterity on the part of the user and, whilst highly satisfactory effects are achievable using these controls, an undue amount of time can be spent by the user in achieving desired results.
OBJECTS AND SUMMARY OF THE INVENTION
The principal object of the present invention is to provide a solution to the above and associated limitations and to provide an improved video processing system for image manipulation to simulate movement.
The invention generally resides in the concept of providing an improved video processing system in which a set of axes can be displayed over an image and the image can be manipulated by reference to said axes by a user by way of input means to realise the desired simulated movement effect.
According to the invention in one of its aspects therefore there is provided a video processing system for use in creating apparent three dimensional movement of a video image on a display screen, in which system at least one set of axes is displayed and processing means responsive to user operable input means are provided for processing image data to control apparent rotational movement of the image about, and/or apparent translational movement in the direction of, a user selected axis of said set.
In an embodiment of the invention, to be described in greater detail hereinafter, a plurality of sets of axes are available to be selectively displayed and individual axes within selected sets can be selected by the user by way of a cursor displayed on the display screen, the position of the cursor being controlled by use of the user operable input means, namely in the embodiment in question a pressure sensitive stylus and an associated touch tablet. The spatial relationship between the various sets of axes can be defined by the user by way of the cursor displayed on the display screen and manipulated by the user with his stylus and touch tablet. By providing a plurality of sets of axes and providing for selective movement in each axes set, the system provides a means by which different levels of movement of an image may be achieved as will become apparent from the following.
A first level set of axes will normally be provided at the centre of a picture, that is to say at the centre of a framed image, and the system arrangement enables the user to rotate the picture with any axis of such first set or axes or to move the picture with the origin of the axes set along the line of any axis as required. The first set of axes is normally set such that two of the axes are arranged to lie parallel to the x and y directions of the picture (and of the display screen, assuming the picture edges are parallel to the edges of the screen which will normally be the case) and a third axis is arranged to be perpendicular to the picture (and to the screen). Translation of the picture along the x and y axes, when the x and y axes of the picture are parallel to the x and y axes of the display screen, will simply cause the picture to shift left or right and up or down on the display screen, while translation along the z-axis will cause the size of the picture to change as it moves in 3D space away from or towards the display screen. The effect of rotation of the picture about an axis needs no explanation.
Higher level sets of axes are also made available to be utilised successively, and can be located by the user at any desired position in three dimensional space remote from the first axis location. The origin of the first set of axes, also called the picture level axes, (i.e. the centre of the image) is maintained at a fixed distance in three dimensional space from the origin of the second level axes and in this way rotation and translation of the picture in relation to a second level axis will cause movement of the picture in three dimensional space as though the centre of the picture were fixedly connected to one end of a rigid arm having its other end located at the origin of the second level axes and movable therewith in rotation and translation. Thus, translation and rotation of the second level axes may be effected to change the shape and size of the picture to accommodate changes in perspective and viewing position as the image is moved. Further higher levels of axes may be defined at other points in three dimensional space as required. Each level of axes will be maintained at a fixed distance from the next higher level axes and in this way complex movements of the picture through three dimensional space may be defined by the user.
As will be explained in the following, in use of the system of the invention to simulate three dimensional movement of a video picture, the first or picture level set of axes is automatically displayed at the centre of the picture when the system is activated. The user can then translate and rotate the picture level set of axes as required by use of his stylus and touch tablet. When a second level set of axes is required this is derived from the picture level set of axes which is, in effect, dragged out to the required origin position of the second set of axes, again by use of the stylus and touch tablet. The second set of axes as thus established are thus oriented identically to the orientation of the picture level set of axes at the time when the second set of axes are set up. Once the second set of axes has been set up, the user has the facility to rotate and translate in the second axes with corresponding movement of the picture. Subsequent axes sets are similarly established, each subsequent axes set being dragged out from the preceding set as above described in the case of the second and picture level set of axes. All axes sets that are set up by a user remain displayed and the user has the option to work in any selected one of a series of sets of axes thus established.
In order to facilitate use of the system each set of axes can be displayed as a set of lines representing the orientation of each axis in the set and accompanying labels which identify each axis, the system being arranged such that selection of a label by cursor control enables rotation about the associated axis to be effected and selection of a line enables translational movement along the associated axis to be effected.
Furthermore, the system may be configured so as to enable the display of a locus representing the movement of the picture in three dimensional space and/or representing the movement of the origin of a user selected set of axes in three dimensional space. The video picture may comprise a sequence of video frames and the system can be arranged such that at least some of the frames can be defined by the user as key frames which are displayed at user defined position within the three dimensional movement. The locations of other frames in the sequence not having a user defined location can be calculated automatically by extrapolation between user defined keyframes. In this case the locations of keyframes in the movement are represented by first markers in the locus displayed on the display screen, and the locations of other frames are represented by second markers in the locus.
Thus according to another aspect of
Cooper & Dunham LLP
Liang Regina
Quantel Limited
LandOfFree
Video processing system for movement simulation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Video processing system for movement simulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Video processing system for movement simulation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2509459