Video disk cartridge disk hub locking mechanism

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06271986

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is generally related to recording systems for digital video and other data, and in particular, provides a mechanism which avoids rattling of a rigid recording disk within a cartridge when the cartridge is removed from a disk drive system.
Video Cassette Recorders (“VCRs”) dominate the consumer video market, due in part to their combination of low cost and recording capabilities. VCR analog magnetic tape recording cassettes can be used to record, play-back, and store video images in a format which is well adapted for use with existing analog television signals. The ability to record allows consumers to use the standard VHS VCR to save television shows and home movies, as well as for play-back of feature films.
The structure of VCR systems and recording media are adapted to record and archive existing television signals. Specifically, a large amount of analog data is presented on a standard television screen during a standard length feature film. VCR systems record this analog data using analog tape recording media. The VCR tape cassettes can be removed from the recording/play-back equipment for storage, thereby minimizing the system costs when large numbers of movies are stored.
While VCR systems successfully provide recording and archive capabilities at low cost, these existing consumer video systems have significant disadvantages. For example, accessing selected portions of a movie stored on a VCR tape can be quite slow. In particular, the cassette must be rewound to the beginning of the movie between each showing, which can involve a considerable delay. Additionally, transferring data to and from the tape takes a substantial amount of time. There has been little incentive to provide high speed accessing and transfer of the video data, as movies are typically recorded and played by the consumer in real time. Alternatives providing faster access are commercially available (for example, optical video disks), but these alternatives generally have not been able to overcome the VCR's low cost and recording capabilities.
Recent developments in video and communications technology may decrease the VCR's advantages over alternative systems. Specifically, standard protocols have recently been established for High Definition TeleVision (“HDTV”). Although digital video cassette tapes are already available, the amount of data presented in a single HDTV feature film using some of the new protocols will represent a substantial increase over existing digital VCR system capacities. Optical disks may be able to accommodate these larger quantities of digital data. Unfortunately, despite many years of development, a successful low cost optical recording system has remained an elusive goal. It is also now possible to break-up large digital video datasets and to transmit them in pieces at high speeds, making it much more important to be able to access and transfer this data rapidly.
Personal computer magnetic data storage systems have evolved with structures which are quite different than consumer video storage systems. Modern personal computers often include a rigid magnetic disk which is fixed in an associated disk drive. These hard disk drive systems are adapted to access and transfer data to and from the recording surface at high rates. It is generally advantageous to increase the total data storage capacity of each hard disk, as the disks themselves are typically fixed in the drive system. Hence, much of the data that is commonly used by the computer is stored on a single disk.
The simplicity provided by a fixed disk drive system helps maintain overall system reliability, and also helps reduce the overall storage system costs. Nonetheless, removable hard disk cartridge systems have recently become commercially available, and are now gaining some acceptance. While considerable quantities of computer data can be stored using these removable hard disk cartridge systems, their complexity, less than ideal reliability, and cost has limited their use to selected numbers of high-end personal computer users.
One particular disadvantage of known removable hard disk computer storage systems is the complexity (and the associated cost) of the hard disk cartridges. The delicate disks are generally surrounded by a cartridge housing, and the housing is often substantially sealed by a door when the cartridge is removed from the disk drive. To prevent the disk from banging against the surrounding cartridge housing during handling, known removable computer hard drive cartridges often include a complex disk biasing mechanism with several separate movable parts. These biasing mechanisms, which are sometimes called “anti-rattle” devices, add significantly to the manufacture and assembly costs for removable computer hard disk cartridges.
In light of the above, it would be desirable to provide improved data storage systems, devices, and methods for storing video and other data. It would be particularly desirable if these improved systems, devices and methods were adapted for digital video data such as the new HDTV protocols, and had the ability to record, archive, and access digital feature films with good reliability and at a low system cost.
SUMMARY OF THE INVENTION
The present invention provides improved devices, systems, and methods for storing and archiving digital video and other data. More specifically, the invention provides a simple, reliable, and low cost rotatable locking mechanism which prevents a rigid recording disk from rattling within a cartridge when that cartridge is removed from a disk drive. The disk is urged against an inner surface of the cartridge housing by an arm extending from a door unit of the cartridge. The door unit generally includes a door which translates laterally to provide access to the disk within the cartridge. At least one resilient arm extends from the door unit. The arm engages a feature or fixed protuberance defined by an inner surface of the cartridge housing when the door moves towards a closed position. The feature deflects the arm axially against the disk, so that the resilient arm presses the disk against the housing. This provides an elegant cartridge anti-rattle mechanism having a low number of parts, thereby reducing manufacturing costs, assembly time, and failures of the data cartridge.
In a first aspect, the present invention provides a disk drive system for use with digital video and other data, the system comprising a cartridge housing. A feature and a disk are disposed within the housing, and a door unit is mounted to the housing. An arm extends from the door unit and is deflected by the feature as the door moves between an open position and a closed position. As a result, the arm inhibits movement of the disk within the housing when the door is in the closed position. A disk drive includes a cartridge receptacle having a surface that moves the door from the closed position towards the open position when the cartridge is inserted therein.
In another aspect, the invention provides a cartridge for use with a disk drive. The cartridge comprises a cartridge housing having an inner surface. The inner surface of the housing defines a feature, and a disk is disposed within the housing. A door unit is mounted to the housing and is movable between an open position and a closed position. A resilient arm extends from the door unit. The feature deflects the arm when the door unit moves between the open position and the closed position, so that the arm urges the disk against the cartridge housing when the door is in the closed position.
In another aspect, the present invention provides a method for inhibiting a rigid disk from rattling within a disk cartridge housing after the cartridge is removed from a disk drive. The method comprises urging the disk against the cartridge housing by deflecting at least one arm of the rotatable locking mechanism when a door unit moves from an open position toward a closed position. The at least one arm extends from the door unit of the housing.


REFERENCES:
patent: D. 350115 (199

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Video disk cartridge disk hub locking mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Video disk cartridge disk hub locking mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Video disk cartridge disk hub locking mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.