Video decoder with down conversion function and method for...

Pulse or digital communications – Bandwidth reduction or expansion – Television or motion video signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06823014

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a video decoder with a down conversion function, and a method for decoding a video signal.
2. Background of the Related Art
In general, an MPEG-2 video decoding chip is provided with a TP (Transport Packet)-decoder, a video decoder, a video display processor, an external memory, and a host interface, and the like. The external memory may be a DRAM (Dynamic Random Access Memory) for receiving, and storing a bitstream, and frame buffers for motion compensation, and the like. MPEG-2 standard requires a bit buffer size of 16 Mbits for supporting an MP@HL mode, at a maximum allowable bit rate of 80 Mbits/s. An existing 16 Mbits DRAM basis MPEG-2 decoder requires an external memory of approx. 96~128 Mbits size. Therefore, a price competitiveness is required in view of manufacturers and consumers. For having the price competitiveness, it is required that a good picture quality is maintained while expensive memory sizes are reduced. However, it is foreseen that an increase of additional external memories is inevitable in the future in light of a trend that various OSD (On Screen Display) and a variety of services are provided.
Recently, in a case of a video compression and decoding system such as MPEG-2, a variety of video signals are multi-decoded and displayed, for providing a variety of services, when it is required that the variety of video signal are decoded by using a limited capacity of the memory. At the end, taking the memory size limitation, price, and a bandwidth of a data bus into account, the video decoding chip is required to be provided with an effective device for reducing a memory capacity that can minimize a loss of a high quality picture signal loss.
In memory reduction algorithms loaded on existing video decoding chips, there are the ADPCM (Adaptive Differential Pulse Coded Modulation) type with a 50% reduction ratio, and the type with 75% reduction ratio that eliminates spatial duplicity by using VQ (Vector Quantization).
The ADPCM is suggested by Pau and Sano in EP 0778709A1 titled “MPEG-2 decoding with a reduced RAM requisite by ADPCM recompression before storing MPEG decompressed data”. The VQ is suggested by Bruni et al. in IEEE Trans., On Customer Electronics, pp. 537-544, 1988, titled “A novel adaptive vector quantization method for memory reduction in MPEG-2 HDTV decoders”.
Compression methods by filtering in a DCT (Discrete Cosine Transformation) frequency domain, or down sampling are suggested by S.-B. Ng (“Lower resolution HDTV receivers”, U.S. Pat. No. 5,362,854, Nov. 16, 1993), S.-J. Choi et al. (“Frame memory reduction for MPEG-2/DTV video coding”, Int. workshop on HDTV '98), and R. Mokry and D. Anastassiou (“Minimul error drift in Frequency scalability for motion-compensated DCT coding”, IEEE Trans. On Circuits and Systems for Video Tech., Vol. 4, August 1994).
Because a compressed code is stored in the memory, the ADPCM method is difficult to display a video by using a video display right away, to require a device for decoding the compressed code, additionally. Since the ADPCM method shows very great picture quality loss in a case of 75% reduction, the ADPCM method is not suitable for the video decoding chip.
Different from this, a plurality of HDTV class videos or SD class videos received at one chip video decoder can be displayed on one screen simultaneously by using a down conversion algorithm. This method can maintain a good picture quality to some extent despite of substantial reduction of the memory capacity, and applicable to inexpensive decoders for low resolution displays. Therefore, a down conversion algorithm that allows to employ a small capacity memory while a good picture quality can be maintained, and a hardware design for the down conversion algorithm, are required.
A general MPEG encoder encodes either a progressive sequence or an interlaced sequence. An interlaced sequence picture is encoded in field or frame units. The field picture has odd scanning lines and even scanning lines, and all encoder and decoder are operative in field. Therefore, data blocks each DCT Transformed in a 8×8 unit only has odd fields or even fields, which are called as field DCT coded blocks.
Different from this, a frame picture has odd scanning lines and even scanning lines, resulting in macro blocks of the frame picture to have odd fields and even fields. However, macro blocks of the frame picture can be coded in two methods. According to the first method, each of the four 8×8 discrete cosine transformed blocks is a DCT coded block in frame units each having odd scanning lines and even scanning lines. On the other hand, according to the second method, two macro blocks from the four macro blocks are blocks DCT coded in field units only having odd scanning lines of the macro blocks, and the rest of two macro blocks are blocks DCT coded in field units only having even scanning lines.
All the macro block in the field picture are DCT coded in field units, and motion compensation of which are predicted from a reference field in making motion compensation. On the other hand, macro blocks in the frame picture are DCT coded in frame units or in field units. Each of the macro blocks in the frame picture is motion compensation predicted in frame units or field units. On the other hand, in a case of the progressive sequence, all pictures are DCT coded, and motion compensation predicted in frame units.
Currently, in this state spread of HD displays are not enough, there are many cases when an HD class picture quality video sequence is displayed in a lower resolution through TV receivers of present NTSC (National Television System Committee) standards. Therefore, it is required that users can watch an HDTV broadcasting signal through the NTSC TV receivers without buying expensive HDTV (High Definition Television), immediately. As explained, a device for converting the HDTV broadcasting signal suitable to the NTSC TV receiver is called as a down converting decoder. At the end, by employing the down converting decoder, a TV receiver having a price significantly lower than a TV receiver having a perfect HD class resolution can be obtained.
One of these types is disclosed in U.S. Pat. No. 5,262,854. This patent includes a down sampler for removing 48 high frequency DCT coefficients in an 8×8 block. According to this patent, a result of IDCT for the rest low frequency 4×4 blocks is stored in a memory. Therefore, for making an accurate motion compensation, when it is intended to reduce an error of motion compensation prediction by using perfect resolution motion vectors, a frame of reduced resolution is used as reference. At the end, in order to provide a picture of a perfect resolution from a picture of a reduced resolution, an up-sampling is employed.
A few effective methods are suggested for reducing the error of motion compensation prediction by up sampling a picture down sampled by using 4×4 IDCT, by R. Monky and D. Anastsssiou (“Minimul error drift in frequency scalability for motion-compensated DCT coding”, IEEE Trans. On circuits and systems for video Tech., Vol. 4, No. 4, August 1994), and Johnson and Princen (“Drift minimization in frequency scaleable coders using block based filtering”, IEEE workshop on visual signal processing and communication, September 1993. These methods employ two dimensional filters each having 5 taps or 8 taps depending on a typically predicted motion vector of a macro block, when positions of 8 tap filter values are changed depending on the motion vector, to require to increase 4 pels into 8 pels by one 8 tap filter.
However, while the foregoing methods are suitable to a progressive sequence having DCT coded blocks in frame units, matters on a video of blocks DCT coded in frame units and DCT coded in field units mixed therein are not taken into account. Moreover, the foregoing methods have a frame type memory structure, a down converting of blocks DCT coded in field units is carried out after the blocks DCT cod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Video decoder with down conversion function and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Video decoder with down conversion function and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Video decoder with down conversion function and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296113

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.