Vibratory feeder embodying self-contained control

Conveyors: power-driven – Conveying system having plural power-driven conveying sections – Forming a single conveying path

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S752100, C198S762000

Reexamination Certificate

active

06471040

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to vibratory feeders and particularly to a vibratory feeder for conveying materials, which has a self-contained power control circuit.
BACKGROUND OF THE INVENTION
Vibratory feeders have been widely used in controlling the bulk delivery of various types of product including materials for use in feeding, mixing, grinding and packaging. Generally, the vibratory feeders are comprised of two elements, commonly referred to as two masses, which are vibrated with respect to one another. The first element is generally referred to as a base, and the second element is generally referred to as a trough. Located between the two elements is a vibratory drive, which vibrates the trough with respect to the base. As the trough is vibrated with respect to the base, the material located in the trough is conveyed or thrown forward at a predetermined rate, the rate being determined by the frequency, the force, and the angle of the vibrations.
The trough, is generally disposed above the base and is connected to the base by a system of springs. The springs are connected to the trough and base on an angle. A vibratory drive is mounted to the base and operatively coupled to the trough, so as to impart vibrations to the trough with respect to the base. At least one example of a vibratory drive includes an armature of an electromagnet, which is connected to one of the base or trough, usually the trough, and an electromagnet core and coil, which is connected to the other.
The feeder as a whole, generally rests upon a support structure. The base of the feeder, while resting upon the support structure, is generally vibrationally isolated from the support structure by one or more coil springs, or elastomer springs to minimize unwanted forces from being transmitted into the support, and surrounding structures.
When an electric current is caused to flow through the magnet, the armature and magnet pole faces are mutually attracted to each other, causing the springs to deflect, and the trough to be displaced with respect to the base, and relative to their rest positions. When the current is removed, the magnet releases the armature and the energy stored in the spring system causes the trough to move back toward its rest position. The movement of the trough generally continues through the rest position to a deflected position in the opposite direction, where the movement of the trough with respect to the base once again changes direction, back toward the rest position. As current is reapplied and removed, the process is repeated. If the current is turned on and off at a uniform rate, the trough and base will generally vibrate with respect to one another at a similar rate, or frequency.
In at least one type of vibratory feeder, the vibratory feeders are operated at a frequency determined by the power line frequency, or at twice the power line frequency where a diode rectifier is used, or a permanent magnet is used as part of the electromagnetic vibratory drive system. Examples of such feeders are manufactured by FMC Corporation of Homer City, Pa., under the trade name SYNTRON. In such feeders, the frequency is fixed at 120 Hz or 60 Hz in North America, and 100 Hz or 50 Hz (usually 50 Hz) in most other countries of Europe or Asia. Since the frequency at which these feeders operate is generally fixed, only the stroke and stroke angle can typically be adjusted to optimize the feed rate. The stroke angle is largely dependent upon the construction and the orientation of the parts with respect to one another. Once the specific construction of the vibratory feeder has been determined, the stroke angle for that particular model becomes relatively fixed. Consequently, only the stroke magnitude remains as a parameter, which can be adjusted for adjusting the feeder's performance. Even still, the stroke magnitude of these feeders is constrained by the amount of magnetic force available to deflect the spring system, and ultimately by the stress limitations of the spring system and the other structural elements of the feeder.
The vibrational feeders generally attempt to take advantage of the natural amplification of the stroke due to resonance, by adjusting the natural frequency of the mass/spring system to be close to that of the operating frequency. This assures that there will be sufficient power available to operate the feeder with a reasonably sized electromagnetic. A typical maximum stroke value for feeders, of the above mentioned type, operating between 50 and 60 Hz. is between approximately 0.0625 inches and approximately 0.144 inches. Generally the lower the frequency the greater the possible maximum value of the stroke. A more detailed discussion of stroke angle and stroke magnitude is discussed in connection with Patterson et al., U.S. Pat. No. 5,967,294, entitled “High Stroke, Highly Damped Spring System for Use with Vibratory Feeders, the disclosure of which is incorporated herein by reference.
As the vibratory drive is actuated, and the trough is accelerated, the material resting on the surface of the trough is accelerated with the trough. As the trough reaches its maximum point of deflection, the trough begins to slow down and move back. If the material located in the trough has been accelerated sufficiently for the material to take flight, the material will continue to move forward as the trough reaches its maximum deflection, changes direction and moves back toward its rest position. Eventually, the material will fall back toward the surface of the trough, generally displaced at some distance forward from where the material originally took flight. During subsequent applied vibrations, the material is progressively moved even further forward. In this way, the material located in the trough can be conveyed in the desired direction by the vibratory feeder.
Generally, the magnitude and the frequency of the vibrational force applied to the trough is controlled by the characteristics of the power signal supplied to the vibratory drive of the vibratory feeder. In current vibratory feeders the power signal supplied to the vibratory feeder is generally controlled by an external controller. The external controller generates a conditioned power signal having the specific magnitude and frequency necessary to convey the material located in the trough at the desired rate and in the appropriate direction. The conditioned power signal is then conveyed over power lines specific to the corresponding vibratory feeder. Often times the external controller has one or more controls for adjusting the characteristics of the power that is supplied to the vibratory feeder.
Individual control of the specific power characteristics supplied to each vibratory conveyor is important, because each vibratory feeder will have its own unique material conveyance characteristics including its own resonant frequency. The material conveyance characteristics will vary between different vibratory feeders, due to inherent differences, which can result from known tolerances during their manufacture and/or dissimilar wear during their subsequent use. Where multiple vibratory feeders are used within the same system for a particular process it will likely be necessary to separately adjust each of the individual vibratory feeders in order to correctly manage material flow. As a result, each feeder will have a different power requirement, regardless of whether or not the material conveyance rates are the same or different for the different vibratory feeders. Consequently, prior systems have traditionally run separate power lines to each vibratory feeder, even where the multiple vibratory feeders are controlled through a common external controller.
As noted previously, vibratory feeders are commonly used in controlling the bulk delivery of product. One such noted example includes the use of vibratory feeders in product packaging. In many such instances multiple vibratory feeders are needed to provide accurate weights and corresponding processing rates demanded by the packaging process. Often times the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vibratory feeder embodying self-contained control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vibratory feeder embodying self-contained control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vibratory feeder embodying self-contained control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947395

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.