Electricity: electrical systems and devices – Electrolytic systems or devices – Liquid electrolytic capacitor
Reexamination Certificate
2003-11-04
2004-11-30
Dinkins, Anthony (Department: 2831)
Electricity: electrical systems and devices
Electrolytic systems or devices
Liquid electrolytic capacitor
C361S535000, C361S301400
Reexamination Certificate
active
06826034
ABSTRACT:
BACKGROUND
Many electrochemical cells, such as capacitors, batteries or rechargeable batteries, have a housing in the form of a cup (i.e., a cup-shaped, or substantially cylindrical, housing) that accommodates (i.e., holds) an electrode stack. The electrode stack generally comprises flat positive and negative electrodes that can be separated from one another via, e.g., a separator layer. The electrodes, in this example, make contact with an electrolyte. In the case of electrolytic capacitors, such as aluminium electrolytic capacitors, the electrodes frequently comprise an aluminium cathode film and an anode film comprised of aluminium with a dielectric oxide layer. A spacer is located between the films. The spacer may be a single layer or a multiple layer comprised of paper that is impregnated with an electrolyte solution. The arrangement is normally implemented as a winding that is applied around a mandrel and that is introduced into the cup-shaped housing. A cover, on which electrical connections are arranged, is frequently used to close the top of the cup-shaped housing. In this case, and particularly in the case of electrolytic capacitors, the connections can be electrically conductive connections to the capacitor winding.
Electrochemical cells, such as those described above, are frequently used in automotive applications, such as automobiles. There, these cells are subject to very severe mechanical vibrations. If the vibration loads are severe enough, the electrode stack may move relative to the cup-shaped housing. As a result, it is possible for the electrodes of the electrode stack to be damaged, or for the electrical connections between the electrode stack and the electrical connections which are fitted on the outside of the housing to become loose or to be damaged.
An electrolytic capacitor having a high vibration load capacity is known from Laid-Open Specification DE 199 29 598 A1. This electrolytic capacitor has connecting strips between the capacitor winding and the two electrical connections. The connecting strips absorb the majority of the forces which place a load on the capacitor winding when the entire capacitor is subject to vibration. In addition, the capacitor winding may also be fixed in the housing by so-called center beads with a cross section, which tapers into the interior of the housing being fitted. The center beads make contact with the capacitor winding. However, these center beads have a linear contact area with the capacitor winding. Beads such as these do not adequately fix the capacitor winding to the cup-shaped housing, necessitating use of the connecting strips mentioned above.
SUMMARY
The object of the present invention is thus to provide a vibration-resistant electrochemical cell, which can be produced particularly easily, together with a method for producing the electrochemical cell, which avoids the disadvantages mentioned above.
According to the invention, this object is achieved by an electrochemical cell according to claim
1
. Further advantageous embodiments of the cell and production method are the subject matter of further claims.
An electrochemical cell according to the invention includes a cup-shaped housing that accommodates an electrode stack. At least one indentation is provided in the center housing. The indentation fixes (i.e., holds) the electrode stack in the housing. A two-dimensional, flat contact area is, in this case, formed between the indentation and the electrode stack.
Since, in the invention, there is a flat contact area between the indentation and the electrode stack, a particularly large contact area can be produced, which can fix the electrode stack in the housing particularly well and reliably. Conventional indentations in housings of electrochemical cells have a cross section, such as a round cross section, which tapers into the interior of the housing, and which allows only a linear contact area between the indentation and the electrode stack. Thus, housings with conventional indentations are not able to fix an electrode stack reliably when subject to high vibration loads.
A further advantage of an electrochemical cell according to the invention is that the large contact area between the housing and the electrode stack allows better thermal contact to be established. An alternating current load frequently results in heat in the electrode stack, particularly in the capacitor winding of capacitors. Such heat can be dissipated better to the housing and from there to the environment via the particularly large contact area with the housing.
Advantageously, the at least one indentation is formed in side walls of the cup-shaped housing. Also advantageously, there are areas at the edge of the indentation, which are indented more deeply into the interior of the housing than other areas of the indentation. This enables pressure forces to be distributed more uniformly over the electrode stack and, as a result, ensures that the electrode stack is not pinched severely.
It is advantageous for at least three more deeply indented areas to be provided in the indentation. The three more deeply indented areas may represent, e.g., the boundary points in a particularly simple manner for an area in which a flat indentation according to the invention can be produced in a housing.
In order to ensure that the electrode stack is fixed particularly well in the housing, the indentation in the housing advantageously extends over the majority of the height of the electrode stack.
It is also possible that two or more indentations are provided in the housing of the electrochemical cell, which are formed either in the lower area or in the upper area of the electrode stack in the housing. The use of indentations for alternate fixing in the upper and lower areas of the electrode stack likewise makes it possible to ensure that this electrode stack is fixed particularly reliably.
The electrode stack may, in this case, have at least two electrode layers, which are separated from one another by a separator layer. If the electrochemical cell is in the form of an aluminium electrolytic capacitor, then the electrode stack may be a capacitor winding which surrounds two aluminium films as electrodes, which are separated from one another by a separator and make contact with an electrolyte. The anode film may, in this case, have a dielectric oxide, such as aluminium oxide. The separator layer may be comprised of, e.g., one or more layers of paper, which are impregnated with an electrolyte.
One method for producing an electrochemical cell according to the invention comprises the following steps: In a first method step (A), an electrode stack is inserted into a cup-shaped housing. Then, in a method step (B), an indentation with a flat contact area with the electrode stack is formed via a die having a die head. There are at least three contact points provided on the die head which make point contacts with the housing, and in the process fix (i.e., hold) the electrode stack to the housing.
At least three contact points are necessary in order to define the corner points of a flat area in which an indentation is formed in the housing.
A die whose die head is formed such that it forms only point and linear contact areas with the housing during production of the indentation is advantageously used in method step (B). This type of die allows the indentations to be produced particularly well with a two-dimensional, flat contact area with the electrode stack in cup-shaped housings. At the start of the stamping process, the die head makes contact with the housing only via the at least three contact points. As the die head penetrates further into the housing, this results in the housing making contact with edges of the die head that are located between the contact points. The contact areas between the edges of the die head and the housing are linear in this case. This special shape of the die head makes it possible to prevent the conventional outward bulges with a rounded cross section particularly well, which can be produced when using conventional dies (see, for e
Hebel Rainer
Will Norbert
Wittman Rudolf
Dinkins Anthony
EPCOS AG
Fish & Richardson P.C.
LandOfFree
Vibration-resistant electrochemical cell, and method for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vibration-resistant electrochemical cell, and method for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vibration-resistant electrochemical cell, and method for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3333739