Vibration damping device, in particular torsional vibration...

192 clutches and power-stop control – Clutches – Operators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S201000

Reexamination Certificate

active

06681911

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention concerns a device for damping vibrations or oscillations, especially a torsional vibration damper to dampen rotating components, a drive system for vehicles and also a process for controlling the hysteresis of a vibration damping device.
2. Description of the Related Art
Devices to dampen vibrations are known in numerous applications. See, for example, the publication from Borg Warner Automotive: Torsionsschwingungsdämpfer (Torsional Vibration Dampers), 0691W, 1991.
The expression “vibration damping device” should be interpreted in the most general manner. In general, a type of elastic clutch is used, which is arranged between two components in a drive train, for example an internal combustion engine and a transmission. Such devices serve to hinder vibrations from the internal combustion engine from transferring to the rest of the drive train. These must be set in such a manner that the critical torque of the entire dimensional system is far enough below the operational area.
The known vibration damping device includes at least two elements: a primary element and a secondary element, which can be coupled together using a spring mechanism, and which can be rotated against each other circumferentially within a limited angle. The spring mechanism also ideally includes a number of springs, which are ideally arranged at a set distance from each other, in a circle coaxial to the damper axle in the circumference direction. Due to the spring clutch, a transfer of torque occurs, through which a damping affect is additionally achieved in specific measure, due to the spring characteristics. When such a device is used in drive trains for vehicles, it has been shown that the availability of a high friction moment in the drive train is necessary to decrease the vibration amplitudes in the resonant range. However, the result of this is a decrease in driving comfort at higher rotational speeds.
Dependent upon the layout of such devices to dampen vibrations, especially the amount of spring rigidity and the size of the secondary mass, problems were observed in starting the propelling engine, which become obvious during winding up or stretching the damper and the following overshoot or overswing, where the component strength could be surpassed.
SUMMARY OF THE INVENTION
Therefore, the invention is based on the assignment to further develop a vibration damping device in such a manner that the disadvantages in prior art are avoided. Specifically, an optimal adjustment to concrete uses towards high operational safety as well as availability should be achieved in regards to the vibrations that need to be dampened over the entire operational area or a part of the operational area, especially in the area of lower engine rotational speeds. The design layout should be characterized by minimal need for space, simple assembly and above all, minimal expenses.
The vibration damping device includes at least two elements—a primary element and a secondary element—which may be movable to a limited extent relative to each other and in the case of a torsional vibration damper can be rotated to a limited extent in the circumference direction in relation to each other. The first primary element and the second secondary element can be coupled together using a spring coupling. The means to realize the spring coupling include at least one spring device, and in the case of a torsional vibration damper ideally a number of spring devices, arranged circumferentially around the two elements—the primary and secondary elements.
Based on the invention, at least one adjustable coupling or clutch device is integrated in the vibration damping device, including at least two elements rubbing against each other—a first element and a second element—, which bring the primary and secondary elements (
3
.
1
,
3
.
2
) into frictional contact with each other. In addition, a power generator is assigned to the elements rubbing against each other to create a controlled friction contact between the elements rubbing against each other. Control should be interpreted as not only the steerability but also the controllability of the friction engagement or an interference of these possibilities The power generator ideally includes a control device, which functions as adjustor of a control device, ideally an electronic one.
The terms “primary element” and “secondary element” refer to the arrangement and function of these elements in the power flow direction in the traction operation of a propelling engine or propelling unit of the drive. The primary element is connected with the input side, while the secondary element is coupled with the output side. The functions of the moment of force or torque inlet or outlet could, however, depending on operation of the drive train (traction operation or tow operation), also be taken over by a different element, i.e. these are not tied to the primary or secondary element.
There are numerous possibilities in regards to detailed design applications of the primary element and the secondary elements. Ideally, these are mainly designed to be disk-shaped.
An especially preferred design with a minimal number of components has at least one element of the coupling or clutch device being formed by one of the two elements—primary element or secondary element. However, separate frictional engaging elements are also possible.
The inventive solution makes it possible to influence the achieved damping effect in the vibration damping device, in regards to its magnitude size and/or operation over the entire operational area of the propelling engine, and thereby to control the parameters of the vibration amplitudes, in dependence on certain physical parameters in the drive train, for example the speed and/or load of the propelling engine or unit, that cause the friction force or friction moment using the clutch device (friction clutch).
The control/steering conversion technology determines the point in time to operate the friction clutch. In an additional aspect of the invention, the amount of pressure can also be control/steered in a targeted manner to create a corresponding friction moment. This requires the use of a corresponding control/steering concept in regards to the closing the friction clutch and/or the operational force to be used.
Ideally, the secondary element includes in its design at least two lateral disks that can ideally be torsionally fixed to (frictionally engage) each other. The primary element is then arranged axially between the two lateral disks. One element of the clutch device is formed by at least one of the two lateral disks of the secondary element. Ideally, the friction contact of the friction clutch occurs with one of the two elements, here the secondary element, having an even force effect, including the other of the two elements, in this case the primary element. An additional element of the clutch device is formed by a piston element that is torsionally fixed to the primary element, in the case of a torsional vibration damper, and that can be moved in an axial direction. The striking surface of the elements rubbing together which are formed from the lateral disks of the secondary element, are arranged to the surfaces facing the primary element, while the striking surfaces of the elements rubbing together which are formed by the primary element and the piston element are each arranged on the lateral surfaces of these elements, that face the inner surface of the secondary element or the surfaces opposite the lateral disks.
Ideally, the clutch device is a disk clutch.
This means that the striking or frictional engaging surfaces are arranged on the disk-shaped elements. The execution of the striking surfaces are carried out radially in such a manner, that the striking surfaces of at least the elements having the striking surfaces which are immediately in friction contact with each other are ideally arranged the same radial distance from each other.
There are numerous possibilities in regards to execution and function of the means t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vibration damping device, in particular torsional vibration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vibration damping device, in particular torsional vibration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vibration damping device, in particular torsional vibration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.