Vibration damping

Fluid reaction surfaces (i.e. – impellers) – Rotor having flow confining or deflecting web – shroud or... – Axially extending shroud ring or casing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S500000

Reexamination Certificate

active

06659725

ABSTRACT:

This invention relates to vibration damping. More particularly, though not exclusively, it relates to the damping of vibrations in aerofoil blades for gas turbine engines.
Gas turbine engines commonly include an axial-flow turbine that comprises at least one annular array of radially extending aerofoil blades mounted on a common disc. Each aerofoil blade is provided with a circumferentially extending platform near to its radially inner end so that the platforms of adjacent blades cooperate to define the radially inner circumferential boundary of the gas flow path over the blades.
In operation, there is a tendency for the gas flows over the aerofoil blades to cause the blades to vibrate to such an extent that some degree of damping is required. A commonly used design of prior art damper is axially elongated and essentially wedge-shaped in cross section, with two friction surfaces at its radially outer end. These friction surfaces are angled at approximately 60° to the radial direction of the blades and subtend an angle of approximately 120°. The damper is located between two adjacent blades, radially inward of the blade platforms. The radially inner faces of the blade platforms are designed to subtend the same angle as that subtended by the damper friction surfaces. In operation, centrifugal forces tend to draw the damper radially outwards so that its friction surfaces are brought into planar contact with the angled faces on the radially inner surfaces of the platforms. Any vibration of the blades will result in relative movement between the platforms of adjacent blades, and hence in sliding movement between the blade platform faces and the damper friction surfaces. The work done in overcoming the frictional forces associated with this sliding movement dissipates the vibrational energy in the blades and reduces the vibration.
One drawback of this design of damper is that as the relative positions of adjacent blades change as a result of blade vibration, the angle subtended by the blade platform faces may no longer be the same as that subtended by the damper friction surfaces. The surfaces are then no longer in planar contact; the damper will tend to tilt or rock rather than sliding, and the damping effect is lost.
Various designs have been proposed to overcome this problem. EP 0509838 discloses a wedge-shaped damper having raised pads on the two friction surfaces of the damper. The raised pads are located so as to reduce tilting of the damper and keep the raised pads in planar contact with the platform faces. U.S. Pat. No. 5,478,207 discloses a damper which is generally wedge-shaped but which has an offset centre of mass, intended to improve the stability of the damper and to maintain planar contact between the damper friction surface and the blade platform face.
Although these designs of damper address the problem of loss of planar contact, they share a further drawback, in that they are not effective for all modes of vibration. The classical theories of bladed disc vibration identify three types of vibrational modes—blade flap modes, edgewise modes and torsional modes. In an idealized situation, a perfectly tuned bladed disc (i.e. one in which all the blades have the same natural frequency) with a synchronous excitation (e.g. from upstream vanes) would give rise to a single vibration mode with a defined inter-blade phase angle. The smaller the number of vanes, the lower would be this phase angle. In a real situation, however, the blades will not all have the same natural frequency, so the relative blade motions will be complex and will encompass different types of vibrational modes.
It is therefore an object of the present invention to provide an improved damper, which will provide more effective damping in all vibrational modes.
According to the invention there is provided a blade-to-blade vibration damper for a gas turbine engine, the damper including a first friction surface for contacting a first face associated with a turbine blade and a second friction surface for contacting a second face associated with an adjacent turbine blade, said first and second friction surfaces and said first and second faces being planar, said first friction surface and said second friction surface being convergent, the closest-spaced ends of said first friction surface and said second friction surface being spaced apart by a distance at least as great as the maximum circumferential gap between the radially outer ends of said first face and said second face, the angle subtended by said first friction surface and said second friction surface being smaller than the angle subtended by said first face and said second face; wherein the mass of the damper is disposed such that the centre of mass of said damper lies in a plane bisecting the angle subtended by said friction surfaces.
Preferably the damper is substantially wedge-shaped in cross section.
Preferably said closest-spaced ends of said first friction surface and said second friction surface are joined by a convex, curved surface.
Preferably the difference between the angle subtended by said first friction surface and said second friction surface and the angle subtended by said first face and said second face is approximately 10°. In a particular preferred embodiment of the invention the angle subtended by said first friction surface and said second friction surface is approximately 110°, and the angle subtended by said first face and said second face is approximately 120°.


REFERENCES:
patent: 1554614 (1925-09-01), Allen
patent: 3897171 (1975-07-01), Stahl
patent: 5156528 (1992-10-01), Bobo
patent: 5478207 (1995-12-01), Stec
patent: 1 410 607 (1975-10-01), None
patent: 1 457 417 (1976-12-01), None
patent: 1 518 076 (1978-07-01), None
patent: 2 049 068 (1980-12-01), None
patent: 2 208 529 (1989-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vibration damping does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vibration damping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vibration damping will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3145969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.