Spring devices – Vehicle – Mechanical spring and nonresilient retarder
Reexamination Certificate
1998-12-11
2001-07-17
Oberleitner, Robert J. (Department: 3613)
Spring devices
Vehicle
Mechanical spring and nonresilient retarder
C188S321110, C280S124155
Reexamination Certificate
active
06260835
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is directed to a vibration damper or, more specifically, a shock strut for articulated installation between a car body and a wheel guide part in a motor vehicle. The vibration damper has a piston rod sealably guided in a cylinder. The connections between the vibration damper and the car body and the wheel guide are made using an elastic joint. The elastic joint and the vibration damper form a constructional unit that is connected to the wheel guide part or the car body by a quick connection.
2. Description of the Related Art
To simplify the assembly of shock struts or vibration dampers, it is desirable for the vibration dampers to form together with the elastic joint, an assembly unit that can be installed by an easy assembly step which can preferably be carried out by an assembly robot.
Reference DE 44 40 030 A1 shows a simple assembly of a vibration damper or shock strut of the type mentioned above forming a constructional unit with the elastic joint. A catch connection having radially movable spring tongues is provided between the shock strut and the vehicle. These spring tongues are arranged with a structural component part which is fixed with respect to the vehicle. A connection part connected with the vibration damper engages the spring tongues. An elastic clamping body is required which generates an axial pretensioning at the connection location formed by the spring tongues. A problem with an elastic catch connection of this type is that it tends to generate noise when the clamping body force is exceeded and tends to develop wear due to small relative movements between the spring tongues and their contact surfaces.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a quick connection which can be assembled without difficulty for connecting a constructional unit comprising vibration damper and elastic joint with the vehicle and which has a simple construction, no noise problems and can be applied for all known elastic bearings.
This object is met according to the invention by a quick connection between the connection part and the body or wheel guide part of a motor vehicle that is constructed without a catch connection and in a rigid manner so that relative movement is prevented between the connection part and the body or wheel guide part also with high supporting forces. A connection of this type is not only very simple to assemble, but there will also be no noise at the connection site because of the rigid connection. Appropriate shaping of the parts for the quick connection prevents disengagement of the quick connections and ensures an absolutely rigid connection between the connection part and the body.
In accordance with a further feature of the invention, the quick connection is constructed as a quarter-turn closure such as a bayonet type closure. The rigid connection is produced between the connection part and the body by a partial revolution of the connection part with respect to the body. When an automated assembly process is used, the vibration damper is already articulately connected with an axle constructional unit of the motor vehicle before assembly of the axle constructional unit with the body. The vibration dampers engage in correspondingly shaped connections of the body when assembled. The rigid fastening of the vibration damper to the vehicle body is effected by a small rotating movement exerted on the connection part by an appropriate tool applied to the connection part which brings about the rigid fastening in the vehicle body. According to the invention, the quick connection having a bayonet type closure is formed either with rivet bolts that are fastened in the connection part and which engage corresponding circumferentially extending receiving slots in a panel or sheet metal of the vehicle body or with rivet bolts that are fastened directly in the panel or sheet metal of the vehicle body and cooperate with receiving slots in the connection part.
In an embodiment form, the rivet bolts are fastened in the connection part, and openings through which the rivet bolts are guided are arranged in the panel or sheet metal of the vehicle body. A fastening ring with receiving slots is supported on the vehicle body and cooperates with the rivet bolts to form the rigid quick connection by a slight rotating movement of the fastening ring. The fastening ring is provided with a device for engaging a tool for carrying out the rotating movement.
In a further embodiment, the quick connection is formed as a bayonet closure and has a connection part provided with radially extending projections which are distributed along the circumference. The projections engage corresponding cut out portions of a receiving part which is fixedly connected with the vehicle body. Another embodiment in which the quick connection formed as a bayonet closure includes a connection element having circumferentially distributed beads which engage corresponding counter-surfaces in the vehicle body or a part which is fixed to the vehicular body. In this embodiment, the counter-surfaces include threads such as those used by threaded connecting elements. For this purpose, the projections or beads of the connection part and/or the counter-surfaces which cooperate with the latter and are fixed to the body are not round but are provided with sloping surfaces.
In a further embodiment, the quick connections which are constructed in a simple manner and connected with the vehicle body without rotating movement are achieved in that the connection part is provided with a snap ring arranged in an annular groove or in that the connection part is provided with an annular bead. The bead or the snap ring engages a corresponding recess which is fixed with respect to the body and is preferably arranged in springing tongues which extend in the axial direction of the vibration damper. After the snap ring or annular bead is engaged with the recess, a ring-shaped or cap-shaped structural component part is pressed on the outer surfaces of the tongues, so that the tongues can no longer spring up and the rigid connection is accordingly produced between the connection part and the body.
Another advantageous embodiment is achieved in that the connection part has a stop disk. The vehicle body or structural component part which is fixedly connected with the vehicle body has tongues extending in the axial direction of the shock strut. The free ends of the tongues are pressed against the stop disk and a cylindrical ring or a cover cap is arranged on the outside of the tongues after the shock strut has been mounted in the vehicle. For this purpose, the stop disk and/or the tongues may include diagonally extending contact faces, and likewise the cylindrical ring or cover cap, so that the tongues are clamped relative to the contact face of the stop disk when the cylindrical ring or the cover cap is pressed on and the rigid connection is formed between the connection part and the body.
A simplification of the embodiment forms is achieved when the connection part is constructed as a spring plate for a supporting spring of the shock strut or as part of a gas spring. This dual function of the connection part reduces costs for manufacture and assembly because fewer structural component parts are required and the spring force of the supporting spring or gas spring brings the piston rod into the fully extended position. The spring force then facilitates the formation of the rigid connection between the connection part and the body.
A safety device is provided to prevent a disengagement of the quick connection. This safety device includes a body which projects into a receiving slot and which preferably comprises a bendable or springing stop or a retaining screw.
Each of the above embodiments of the quick connection according to the invention are applicable for all of the elastic joints commonly used in vibration dampers and shock struts. Only slight changes to the prior art quick connections are required with respect to holding at the connecti
Angles Manfred
Handke Gunther
Pradel Robert
Cohen & Pontani, Lieberman & Pavane
Mannesmann Sachs AG
Oberleitner Robert J.
Siconolfi Robert A.
LandOfFree
Vibration damper does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vibration damper, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vibration damper will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2446555