Viability assay for sporocyst-forming protozoa

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving viable micro-organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S968000, C435S242000, C435S243000

Reexamination Certificate

active

06344340

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the determination of live and dead encysted protozoa in a population of protozoa. In particular, the invention relates to the use of vital dyes to determine the viability of sporocysts in a sample and then correlating the extent of staining in the sample with the viability of protozoa in the population from which the sample was obtained.
Coccidiosis is a disease of various animals in which the intestinal mucosa is invaded and damaged by a protozoa of the subclass Coccidia. The economic effects of coccidiosis can be especially severe in the poultry industry where intensive housing of birds favors the spread of the disease. Infection by coccidial protozoa is, for the most part, species specific. Numerous species, however, can infect a single host. For example, there are seven species of Coccidia which infect chickens, six of which are considered to be moderately to severely pathogenic.
The life cycle of the coccidial parasite is complex. For example, protozoa of the genera Eimeria, Isospora, Cystoisospora, or Cryptosporidium typically only require a single host to complete their life cycle, although Cystoisospora may utilize an intermediate host. Under natural conditions, the life cycle begins with the ingestion of sporulated oocysts from the environment. When sporulated oocysts are ingested by a susceptible animal, the wall of the sporulated oocyst is broken in order to release the sporocysts inside. In poultry, the release of the sporocyst is the result of mechanical disruption of the sporulated oocyst in the gizzard. Within the sporocysts are the sporozoites which are the infective stage of the organism. In poultry, the breakdown of the sporocyst coat and release of the sporozoites is accomplished biochemically through the action of chymotrypsin and bile salts in the small intestine. Once released, the sporozoites invade the intestinal mucosa or epithelial cells in other locations. The site of infection is characteristic of the species involved. For example, in the genus Eimeria,
E. tenella
is localized in the ceca;
E. necatrix
is found in the anterior and middle portions of the small intestine;
E. acervulina
and
E. praecox
occur in the upper half of the small intestine;
E. brunetti
occurs in the lower small intestine, rectum, ceca, and cloaca; while
E. mitis
is found in the lower small intestine.
Once inside the host animal's cells, sporozoites develop into multinucleate meronts, also called schizonts. Each nucleus of the meront develops into an infective body called a merozoite which enters new cells and repeats the process. After a variable number of asexual generations, merozoites develop into either microgametocytes or macrogametes. Microgametocytes develop into many microgametes which, in turn, fertilize the macrogametes. A resistant coat then forms around the resulting zygotes. The encysted zygotes are called oocysts and are shed unsporulated in the feces. Infected birds may shed oocysts in the feces for days or weeks. Under proper conditions of temperature and moisture, the oocysts become infective through the process of sporulation. Susceptible birds then ingest the sporulated oocysts through normal pecking activities and the cycle repeats itself. Ingestion of viable, sporulated oocysts is the only natural means of infection.
Infection with Coccidia results in immunity so that the incidence of the disease decreases over time as members of the flock become immune. This self-limiting nature of coccidial infections is widely known in chickens and other poultry. The immunity conferred, however, is species specific such that introduction of another species of Coccidia will result in a new disease outbreak. In addition, infected birds shed considerable numbers of oocysts into the environment so that the introduction of new, previously uninfected birds may result in an outbreak of the disease.
The oocyst wall of Coccidia provides a highly effective barrier for oocyst survival. Oocysts may survive for many weeks outside the host. In the laboratory, intact oocysts are resistant to extremes in pH, detergents, proteolytic, glycolytic, and lipolytic enzymes, mechanical disruption, and chemicals such as sodium hypochlorite and dichromate.
Two methods are currently used to control coccidiosis in poultry. The first involves control by chemotherapy. Numerous drugs are available for the control of coccidiosis in poultry. Because of the number of species which cause the disease, very few drugs are efficacious against all species, although a single drug may be efficacious against several species. In modern broiler chicken production, for example, administration of drugs to control coccidiosis is routine. The expense for preventative medication against coccidiosis in chickens alone has been estimated to exceed $90 million dollars in the United States and $300 million worldwide.
Three programs of drug administration are commonly used in the domestic poultry industry. The simplest is the continuous use of a single drug from day one until slaughter. The shuttle or dual drug program involves the use of two different drugs, one administered in the “starter” ration and a second drug administered in the “grower” ration. In the third method, drugs are rotated in hopes of preventing the development of drug resistant strains.
The development of drug resistance by Coccidia is a serious limitation on the effectiveness of chemotherapy to control the disease. Surveys in the United States, South America and Europe have revealed widespread drug resistance in Coccidia. Since drug resistance is a genetic phenomenon, once established, drug resistance can remain in the population for many years until reduced by natural selection pressure and genetic drift.
The use of drugs in animals used for food production is also coming under increasing scrutiny by the public. Consumers are increasingly concerned with the possibility of drug residues in food. This creates pressure in the poultry industry to reduce the use of drugs to control coccidiosis.
Vaccination of birds against Coccidia is an alternative to chemotherapy. An advantage of vaccination is that it can greatly reduce or eliminate the need to administer anti-coccidial drugs, thus reducing costs to poultry producers, preventing the development of drug-resistant strains, and lessening consumer concerns about drug residues.
Numerous methods have been developed to immunize poultry against Coccidia. The successful methods have all been based on the administration of live protozoa, often of an attenuated strain. The most common route of inoculation is oral, although other routes have been used. Edgar, U.S. Pat. No. 3,147,186, teaches vaccination of chickens by oral administration either directly into the mouth or via the feed or water of viable
E. tenella
sporulated oocysts. Davis et al., U.S. Pat. No. 4,544,548, teaches a method of vaccination by continuous administration of low numbers of sporulated oocysts, with or without simultaneous administration of anti-coccidial drugs.
Oral administration of attenuated strains of sporocysts has also been utilized to confer immunity against coccidiosis. Shirley, U.S. Pat. No. 4,438,097; McDonald, U.S. Pat. No. 5,055,292; and Schmatz et al., PCT publication No. WO 94/16725. An alternative to attenuation is disclosed in Jenkins et al.,
Avian Dis
., 37(1):74-82 (1993), which teaches the oral administration of sporozoites that have been treated with gamma radiation to prevent merogonic development.
Parenteral routes of vaccination have included subcutaneous or intraperitoneal injection of excysted sporozoites, Bhogal, U.S. Pat. No. 4,808,404; Bhogal et al., U.S. Pat. No. 5,068,104, and intra ovo injection of either oocysts or sporocysts, Evans et al., PCT publication No. WO 96/40233; Watkins et al.,
Poul. Sci
., 4(10) :1597-602 (1995). Thaxton, U.S. Pat. No. 5,311,841, teaches a method of vaccination against Coccidia by administration of oocysts or sporozoites to newly hatched chicks by yolk sac injection.
One common factor for all methods of vaccin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Viability assay for sporocyst-forming protozoa does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Viability assay for sporocyst-forming protozoa, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Viability assay for sporocyst-forming protozoa will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2946021

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.