Ships – Floating platform – Multiple leg
Reexamination Certificate
1999-12-20
2001-07-10
Swinehart, Ed (Department: 3617)
Ships
Floating platform
Multiple leg
C405S196000
Reexamination Certificate
active
06257165
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a vessel with a work platform. More particularly, but not by way of limitation, this invention relates to a vessel with a movable platform for use in the oil and gas exploration, drilling and production industry.
As the search to find commercial hydrocarbon deposits continues, the need to find significant reservoirs has necessitated the exploration in many geographical areas including bays, oceans and seas. Often times, these areas are in remote and secluded regions. As those of ordinary skill in the art will recognize, the bays, oceans and seas present many problems to operators.
In the exploitation of the hydrocarbon reservoirs, many different types of vessels have been developed. In the drilling area, operators have used fixed platforms, jack-up rigs, semi-submersibles, and drill ships (this list is illustrative). These types of drilling and production platforms have a finite about of space for personnel, equipment and materials. Therefore, there is a need for a support type of vessel that can service the larger platforms. In the past, operators have used vessels, sometimes referred to as work boats, to tie up near the platform in order to aid in the servicing of the larger platforms. The type of servicing may include, but not limited to, providing work space, storing equipment, transporting equipment, and movement of equipment from the vessel to the platform.
Vessels have many disadvantages, however, in performing this servicing function. For instance the vessel will be susceptible to wave and wind forces. Because of their inherent unstableness, it is difficult to place devices such as cranes on the work boats. Further, the work deck of these vessels is very near the water line (ocean).
Therefore, there is a need for a vessel that can be transported in a body of water to a location. Further, there is a need for the vessel to be secured so that the vessel can become a work platform. There is also a need for the work platform attached to the vessel to be elevated to a desired height. These and other needs will be met by the embodiments disclosed and taught in this application.
SUMMARY OF THE INVENTION
A vessel with a movable deck is disclosed. The vessel will comprise a catamaran hull having a first pontoon and a second pontoon. In one embodiment, a first suction anchor is attached to the first pontoon with a first anchor line attaching the first suction anchor to the first pontoon along with a second suction anchor that is attached to the second pontoon with a second anchor line attaching the second suction anchor to the second pontoon. The catamaran hull has a platform attached thereto.
In one embodiment, the vessel also includes a first leg, second leg, and third leg extending vertically from the top side of the platform. It should be noted that it is possible to have an embodiment which contains only a first and second leg; alternatively, it is possible to have an embodiment with a first, second, third and fourth leg. The movable deck will contain a first opening, a second opening, and a third opening which has the first, second, and third leg respectively disposed therethrough. The vessel further contains means, operatively positioned on the movable deck, for raising and lowering the movable deck relative to the platform.
The vessel may further comprise a first thruster nozzle attached to the first pontoon, the first thruster nozzle being movable in a 360 degree phase and a second thruster nozzle attached to the second pontoon, said second thruster nozzle being movable in a 360 degree phase. Power means for selectively powering the first and second thruster nozzles is also included.
In the preferred embodiment, the vessel will also include dynamic positioning means for computing and adjusting the coordinate location of the vessel in the water body. The dynamic positioning means is operatively associated with the first and second thruster nozzle along with activation means for selectively activating the first and second thruster nozzles based on the coordinate location in order to position the vessel to a predetermined location.
Also in the preferred embodiment, the anchor member comprises a first suction anchor attached to the first pontoon and a second suction anchor attached to the second pontoon. The catamaran hull will contain means for placing the first and second anchor lines in tension. Additionally, in one of the embodiments, the first platform contains quarters for personnel and the second platform contains a crane for hoisting and lifting goods to and from the movable platform.
In one of the embodiments disclosed in this application, the lowering means comprises a rack located on the first, second, and third leg and a pinion located on the movable deck. A motor is included for energizing the pinion in order to engage the rack which in turn raises or lowers the moveable deck.
A method for raising a work deck on a vessel is also disclosed. The vessel includes a platform having a first and second hull attached to its underside. A first, second and third leg extends vertically from the top side of the first platform. The work deck contains first, second, and third openings that have the legs disposed. The method includes positioning the vessel to a location in a body of water and placing water within a ballast tank located within the catamaran hull. Thereafter, anchors are lowered and set on the water bottom floor.
Next, the water will be pumped out of the ballast tank so that the anchor chains are placed into tension. Thereafter, the work deck is raised relative to the platform. The method further comprises monitoring the tension within the anchor chains and adjusting the ballast within the ballast tank to maintain a predetermined amount of tension within the anchor chains. In the preferred embodiment, the anchors are lowered at a 90 degree angle relative to the water bottom.
In the preferred embodiment, the work deck contains a crane positioned thereon, and wherein the vessel is positioned adjacent a drilling rig and/or production platform. The method further comprises lifting a piece of equipment located on the work platform with the crane. The operator would monitor the tension within the anchor chains while continuing to transport equipment to the drilling rig and/or production platform with the aid of the crane. The ballast would be continuously monitored and adjusted to maintain the predetermined amount of tension in the anchor chain.
In the preferred embodiment, the step of positioning the vessel consist of providing a dynamic positioning means that includes a global positioning system (G.P.S). The G.P.S. satellite device will transmit a signal and receives the return signal so that the location of the vessel is then computed via the dynamic positioning means. The thruster nozzles will be activated in response to the computed location in order to adjust to the correction position.
The anchor herein disclosed includes a conical surface forming a chamber so that in the step of setting the anchors, the method includes placing the anchor on the water bottom and suctioning water from the chamber so that the anchor is held on the water bottom via a suction force.
The method would then comprise lowering the work deck, unseating the anchors from the water bottom and raising the anchors. In order to unseat the anchors, the method includes filling the chamber with water and eliminating the suction within the chamber. The ballast of the first and second hull will be adjusted during this process. Afterwards, the anchors are stored, and the vessel can be moved under its own power from the location.
An advantage of the present invention includes that the vessel can be deployed in deep waters including water of 500 feet and greater. Another advantage is that the vessel is smaller and more compact than prior art vessels that work in water. Accordingly, the present invention is substantially more cost effective than derrick barges.
Another advantage is that the vessel is self propelled. Yet another advantage is that th
Chouest Laney
Danos, Jr. Allen
Domingue & Waddell PLC
Swinehart Ed
LandOfFree
Vessel with movable deck and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vessel with movable deck and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vessel with movable deck and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2468015