Vertical trim system for marine outdrives

Marine propulsion – Screw propeller – With means effecting or facilitating movement of propulsion...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C440S054000, C440S06100B

Reexamination Certificate

active

06383043

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to marine inboard-outboard drive systems, and more particularly, to a vertical trim system for adjusting the vertical height of a marine outdrive.
2. Desription of Related Art
Marine inboard-outboard drive systems are well known in the art. A typical inboard-outboard system includes an engine mounted inside a boat that is coupled to an outdrive unit through an opening in the boat transom. A transom plate is coupled to the boat's transom and a seal is provided to seal the opening. The transom plate further supports the outdrive system. The outdrive unit is coupled to the transom plate via a gimbal ring that pivots about a vertical pivot axis for steering purposes. The gimbal ring also allows the outdrive unit to pivot about a horizontal pivot axis for kick-back movement of the outdrive unit.
A driveshaft extends through the opening in the transom, with one end of the driveshaft coupled to the engine inside the boat, and the other end coupled to the outdrive unit so as to turn a propeller shaft. In known inboard-outboard systems, the driveshaft is coupled to the outdrive via a universal joint to allow the outdrive unit to pivot via the gimbal ring for steering or kick-back.
Propeller location is very significant in any marine drive system. A key principle for performance is that the propellers be located at their optimum depth in the water at all times, providing optimum efficiency, speed and control of the boat. A problem arises when mounting an outdrive of an inboard-outboard system to the transom of a boat. Outdrives are fixed at the engine crankshaft height. Once the outdrive is secured to the transom, it is not vertically adjustable. Therefore, the propeller depth also may not be adjusted once the outdrive unit is secured to the transom. When installing an inboard-outboard drive system, an optimum propeller depth relative to the boat is determined. Then, the system is installed such that the propeller is located at this optimum depth. This propeller depth, however, is only “optimum” for a given set of conditions, since the optimum propeller depth changes as conditions change.
Several factors affect the propeller depth necessary for optimum boat performance. For example, the total weight and center of gravity of the boat changes as fuel is consumed or the number of passengers changes. Sea conditions also affect the desired propeller location—a propeller depth that is appropriate for calm seas likely will not provide optimum performance in choppy seas. Thus, the “optimum” propeller depth calculated prior to installing the outdrive is a compromise, at best. This problem is magnified in dual-drive system boats that have a V-hull design. Since the engines are placed side-by side, they are located higher above the water line in order to fit into the V-hull. The propellers, in turn, are also mounted higher, affecting the trim capability of the boat.
Unfortunately, no satisfactory solution to the above described problem exists in the prior art. In one attempted solution, spacer blocks are placed between the outdrive upper case and lower foot, effectively extending the depth of the outdrive unit, thereby extending the propeller further into the water. Spacers, however, cannot be used to raise the propeller height relative to the boat. Moreover, adding or removing spacers is a complicated and time-consuming undertaking, and if conditions change, the boat's driver cannot change the propeller depth while the boat is underway.
Another attempted solution uses a “set-back,”or spacer box. The outdrive is mounted on the spacer box, which is located between the boat's transom and the outdrive gimbal ring, rather than mounting the outdrive directly to the transom. The position of the spacer box may be manually adjusted to a small degree, which in turn, allows the propeller depth to be varied slightly. However, as with the spacer blocks, the propeller depth may be varied only a small amount, and the process is time consuming and expensive. Furthermore, the box assembly cannot be adjusted for changing conditions while the boat is underway.
The present invention addresses these, and other, shortcomings of prior art marine outdrive systems.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a vertical trim system for a marine inboard-outboard outdrive includes a transom plate that has first and second sides, with the first side adapted to be mounted to a boat transom. The vertical trim system further includes at least one arm having first and second ends. The first end is pivotally coupled to the second side of the transom plate, such that the arm pivots about a horizontal axis. The second end of the arm is adapted to be pivotally coupled to a gimbal ring.
In another aspect of the invention, a marine outdrive system for an inboard-outboard propulsion unit includes a transom plate defining an opening therethrough. The transom plate has first and second sides, with the first side adapted to be mounted to a boat transom. The outdrive system further includes an outdrive unit that has a gimbal ring, and a driveshaft that includes first and second ends. The first end is adapted to extend through the transom plate opening and be coupled to an engine, the second end is coupled to the outdrive unit via a constant velocity joint. First and second arms each have first and second ends, with the first ends being pivotally coupled to the second side of the transom plate in spaced relationship, such that the first and second arms pivot about first and second horizontal axes, respectively. The first axis is generally parallel to the second axis, and the second ends of the first and second arms each are coupled to the gimbal ring.
In yet another aspect of the present invention, a method is provided for adjusting the depth of an outdrive propeller for an inboard-outboard boat propulsion system. The propulsion system includes a transom plate coupled to a boat transom, an engine mounted inside a boat, and a gimbal ring pivotally coupled to the outdrive. The method includes the acts of coupling one end of a driveshaft to the engine via a universal joint and the other end of the driveshaft to the outdrive via a constant velocity joint, pivotally coupling one end of an arm to a location on the transom plate and the other end to the gimbal ring, and pivoting the arm about the location on the transom plate to adjust the height of the outdrive.
In still another aspect of the invention, the pivoting arm or arms of any of the previously mentioned embodiments is replaced by a box-arm assembly that travels in linear motion along one or more guide rails mounted vertically on the transom plate. The gimbal ring of an outdrive is connected to the box-arm assembly, allowing the outdrive to be raised or lowered by moving the box-arm assembly along the rails.


REFERENCES:
patent: 4865569 (1989-09-01), Newman
patent: 5647780 (1997-07-01), Hosoi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vertical trim system for marine outdrives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vertical trim system for marine outdrives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vertical trim system for marine outdrives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2834928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.