Cryptography – Electric signal modification – Having production of printed copy
Reexamination Certificate
1997-07-21
2002-08-27
Hayes, Gail (Department: 2132)
Cryptography
Electric signal modification
Having production of printed copy
C705S028000, C713S179000
Reexamination Certificate
active
06442276
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to a system and method for the verification of authenticity of goods. More particularly, in several embodiments the invention relates to a system and method of authenticating goods, tracking goods and/or detecting a diversion of goods via use of a random code and a used code database, encryption and/or comparison techniques.
BACKGROUND OF THE INVENTION
Products which are mass produced are distributed to end users through sales and distribution channels. When the products have particular value associated with them, counterfeiters sometimes produce products which are copies of those produced by the original manufacturers. These counterfeit products are then introduced into the sales and distribution channels and end users become deceived regarding the source of the goods and/or their quality. Lost sales occur for the original manufacturer, and the end user may receive less value than what was expected. Name brand goods, certified products and copyrighted products are often the target of such counterfeiting activities.
To address the problem of counterfeiting, one prior art solution has been to attach a label containing an optical device which is difficult to reproduce, for example, a holographic image to the products to confirm their authenticity. The original manufacturer controls these labels and their content to prevent easy access to such labels by counterfeiters. Use of such an optical device is desirable in that the authentication procedure is relatively simple, for anyone may visually inspect the label and its presence indicates authenticity. Unfortunately, this approach suffers from the weakness that skilled counterfeiters, by extending substantial effort, can reproduce these labels. Once reproduction is achieved, the counterfeiter may easily introduce a multitude of counterfeit products within the sales and distribution channels. A second disadvantage to the optical device methodology is that the creation of the special labels is relatively expensive and therefore is only cost effective for certain classes of products.
In pre-paid service areas, the use of randomly generated numbers have been utilized to validate a user prior to accessing the pre-paid service. For example, pre-paid phone card access numbers generated by random numbers have been used for such purposes. The phone card number is input into a phone or other device to validate the user prior to registering a phone call. A second application involves the use of confirmation numbers as back-up identification for electronic ticketing air fares. The use of random numbers for access of such pre-paid services, however, is substantially different than the use of optical codes for authenticating mass produced goods. For example, in the pre-paid phone card application, each random number is held secret by the user of the service, therefore a theft of the phone card or its loss may allow someone to access the pre-paid service. In the electronic air fare ticketing application, neither secrecy nor duplication of the code is of great concern since the use of the random number is only for backup identification. Knowledge of the confirmation number by a third party is unlikely to cause any loss because a third party's attempt to board an airplane flight will conflict with the boarding by the valid party. Unlike the product authentication in which previously optical devices have been used, the pre-paid service using randomly generated numbers play no role in preventing or deterring large scale loss due to counterfeiting of mass-produced goods.
In another prior art method for authentication, an apparatus is used to measure a random characteristic of a card, tag or label. The random characteristic, or “fingerprint,” is read by a special reading apparatus and converted to a code which is encrypted and printed on the tag or label. The encryption ties the label to the original manufacturer of the product and the code value in turn is tied to the particular label on which it is printed since that label has the “fingerprint.” This method, although secure in authenticating single labels, introduces significant costs because the label must contain special technology for the development of the “fingerprint” and a special reader must be developed and used at the time of printing the label and when the label is subsequently field checked. These shortcomings introduce significant costs in attempting to authenticate mass produced goods. It is not necessary to prevent even single counterfeits, which this method does, since the manufacturer of mass produced goods is instead interested in deterring mass counterfeiting of his product.
Therefore there is a need in the art for a low cost, secure way of verifying the authenticity of mass produced goods. There is also a similar need to track goods and/or detect a diversion of goods.
SUMMARY OF THE INVENTION
In one aspect of the invention, a method of verifying the authenticity of goods includes generating one or more random codes and storing the one or more random codes in a database. The goods are marked with one of the generated random codes such that each of the goods contains its own unique random code. Upon field checking an inventory of marked goods and comparing the codes on the marked goods to codes within the database, the authenticity of goods may be verified. The field checking step may further include verifying whether the codes on the goods are valid random codes and checking whether the codes on the goods have already been used. An indication may then be provided if the random code is invalid or, if valid, it has already been used.
In another aspect of the invention, a system for verifying the authenticity of goods includes a database containing a plurality of unique random codes and an indication whether each of the unique random codes has been read, and a code reader or scanner for reading the code affixed to a good. This system further includes a comparing means for comparing a read code to the unique random codes contained within the database such that upon comparison the comparing means indicates whether the read code is valid and if valid, whether it has been read previously on another good, thereby indicating the good's authenticity.
The verification system further includes a computer for generating the plurality of unique random codes which includes a memory for containing each of the generated random codes. The computer, upon generating a random code, compares the code to a list of previously generated codes within the memory and eliminates any generated code that is a duplicate, thereby ensuring that each generated code is unique. The verification system also includes a printer, in electrical communication with the computer, for printing the generated random codes on a tag, label or directly upon the good to be marked. The printer is capable of printing either the generated code alone, or each generated code with its corresponding bar code equivalent to the tag, label or directly on the product to aid in the subsequent reading of the code. The system may further include a scanner for reading the printed codes.
In another aspect of the invention, a method of detecting diversion of goods from a desired channel or channels of distribution includes the generation of an encrypted code, wherein the code has a random portion and a non-random portion. The encryption of this code is effectuated by an encryption key wherein each encryption key is unique to a desired channel or channels of distribution. The encrypted codes are applied to goods such that each good has its own unique encrypted code. Subsequently, within the desired channel or channels of distribution, the various goods are inspected and it is verified whether the decryption key used on the code successfully reproduces the non-random portion which is uniquely dedicated for the desired channel or channels of distribution. Consequently, the method identifies whether a diversion of goods has occurred if the decryption key does not match that used on the ins
Assure Systems, Inc.
Hayes Gail
Meislahn Douglas
Renner , Otto, Boisselle & Sklar, LLP
LandOfFree
Verification of authenticity of goods by use of random numbers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Verification of authenticity of goods by use of random numbers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Verification of authenticity of goods by use of random numbers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2918706