Venturi feeder bypass and control

Liquid purification or separation – With means to add treating material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S268000, C210S206000, C422S263000, C422S264000, C422S282000

Reexamination Certificate

active

06656353

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a chemical dispensing device, and more particularly, a Venturi feeder bypass and control in the chemical dispensing device used to dispense a chemical product into a water stream passing through a water flow line.
2. Description of the Prior Art
The chemical treatment of water is commonly used to improve the treated water by preventing metals such as iron, calcium, copper and manganese from coming out of solution and forming scales on the water lines and vessels, among other things. Dispensing devices are used to meter desired amounts of the chemical product into the water stream, and the devices are inserted into the water flow line without disrupting the water stream. An example of such a device is disclosed in U.S. Pat. No. 5,507,945 by Hansen.
One problem with such devices is when dispenser failure occurs in a dish machine, especially in the sump portion of the dispenser which holds the product, the dish machine and the water source often must be shut off while repairing or replacing the device since the device is hard plumbed into the water feed line. A built in bypass and control assembly allows repairs to be performed and product to be added without shutting off the dish machine or the water supply and allows the product feed rate to be controlled.
SUMMARY OF THE INVENTION
In a preferred embodiment apparatus for use with a fluid piping system for dispensing a measured amount of a soluble chemical into a liquid flowing through the fluid piping system, wherein the fluid piping system includes a canister and a chemical holding container, the canister having a cavity in which the chemical holding container is placed and an opening allowing access to the cavity, a cap member is configured and arranged to cover the opening of the canister and has a first end and a second end. A fluid flow conduit extends through the cap member from the first end to the second end and has a reduced diameter proximate a center portion thereof. An inlet port of the fluid flow conduit is proximate the first end, and an outlet port of the fluid flow conduit is proximate the second end. A first passageway is positioned upstream of the reduced diameter of the fluid flow conduit and provides fluid communication between the fluid flow conduit and the cavity. A second passageway provides fluid communication between the cavity and the reduced diameter of the fluid flow conduit. A first opening is located in the cap member proximate the inlet port of the fluid flow conduit, and a second opening is located in the cap member proximate the reduced diameter of the fluid flow conduit. A first control member is configured and arranged for insertion into the first opening, and the first control member controls fluid flowing from the fluid flow conduit into the first passageway. A second control member is configured and arranged for insertion into the second opening, and the second control member controls fluid flowing out of the second passageway into the fluid flow conduit.
In another preferred embodiment apparatus for use with a fluid piping system for dispensing a measured amount of a soluble chemical into a liquid flowing through the fluid piping system, wherein the fluid piping system includes a canister and a chemical holding container, the canister having a cavity in which the chemical holding container is placed and an opening allowing access to the cavity, a cap member is configured and arranged to cover the opening of the canister and has a first end and a second end. A fluid flow conduit extends through the cap member from the first end to the second end and has a reduced diameter proximate a center portion thereof. An inlet port of the fluid flow conduit is proximate the first end, and an outlet port of the fluid flow conduit is proximate the second end. A first passageway is positioned upstream of the reduced diameter of the fluid flow conduit and provides fluid communication between the fluid flow conduit and the cavity. A second passageway provides fluid communication between the cavity and the reduced diameter of the fluid flow conduit. A first opening is located in the cap member proximate the inlet port of the fluid flow conduit, and a second opening is located in the cap member proximate the reduced diameter of the fluid flow conduit. A first control member is configured and arranged for insertion into the first opening for controlling fluid flowing from the fluid flow conduit into the first passageway, and a second control member is configured and arranged for insertion into the second opening for controlling fluid flowing out of the second passageway into the fluid flow conduit. The first control member and the second control member have an open position and a control position, whereby fluid is prevented from flowing into the first passageway when the first control member is in a closed position and fluid is prevented from flowing out of the second passageway when the second control member is in a closed position.
In a preferred embodiment method of controlling a measured amount of a soluble chemical dispensed into a liquid flowing through a flow line, fluid is allowed to pass through a fluid flow conduit of a cap member. The cap member is configured and arranged to cover an opening of a canister and has a first end and a second end. The fluid flow conduit extends through the cap member from the first end to the second end and has a reduced diameter proximate a center portion thereof. The fluid enters the fluid flow conduit through an inlet port and exits the fluid flow conduit through an outlet port, the inlet port being proximate the first end and the outlet port being proximate the second end. The fluid is allowed to flow into a first passageway and into the canister containing a soluble chemical where the fluid dissolves a portion of the soluble chemical to create a use solution. The first passageway is positioned upstream of the reduced diameter of the fluid flow conduit and provides fluid communication between the fluid flow conduit and the canister. The use solution is then allowed to flow into a second passageway being positioned downstream of the first passageway, into the fluid flow conduit, and out of the outlet port. The second passageway provides fluid communication between the canister and the reduced diameter of the fluid flow conduit. A control member configured and arranged for insertion into the first passageway and the second passageway is used to meter a measured amount of the use solution flowing into the fluid flow conduit.
In a preferred embodiment bypass and control member for use with a chemical dispensing device, the chemical dispensing device having a canister, a chemical holding container and a cap member. The canister has a cavity in which the chemical holding container is placed and an opening allowing access to the cavity. The cap member is configured and arranged to cover the opening of the canister and has a first end and a second end. The cap member also has a fluid flow conduit extending through the cap member from the first end to the second end and has a reduced diameter proximate a center portion thereof. The fluid flow conduit has an inlet port proximate the first end and an outlet port proximate the second end. The fluid flow conduit also has a first passageway positioned upstream of the reduced diameter providing fluid communication between the fluid flow conduit and the cavity and a second passageway positioned downstream of the first passageway providing fluid communication between the cavity and the reduced diameter of the fluid flow conduit. A first opening is located in the cap member proximate the inlet port of the fluid flow conduit and is in alignment with the first passageway. A second opening is located in the cap member proximate the reduced diameter of the fluid flow conduit downstream from the first opening and is in alignment with the second passageway. A control in assembly includes a first bushing and a first stem. The first bushing is configured a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Venturi feeder bypass and control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Venturi feeder bypass and control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Venturi feeder bypass and control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153988

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.