Rotary kinetic fluid motors or pumps – Method of operation
Reexamination Certificate
2002-05-01
2004-03-09
Look, Edward K. (Department: 3745)
Rotary kinetic fluid motors or pumps
Method of operation
C415S176000, C415S211200, C062S500000, C062S401000
Reexamination Certificate
active
06702545
ABSTRACT:
FIELD OF INVENTION
This invention is designed for more effective cooling than, but with similar portability, cost, and ergonomics to, and applications of, traditional fan, fan/ducting, or fan/shroud cooling systems or apparatuses without the use of liquid refrigerant. In addition, the invention solves many problems that were inherent in the prior art.
BACKGROUND OF THE INVENTION
Cooling is a need that has been expressed throughout the history of the documented invention, and throughout this time various methods of cooling have been known, with some practiced more than others. The volume of art present indicates the intensity of the need for cooling; the nature of the art indicates a nearly universal objective: to develop, manufacture, and use cooling methods and systems that are effective, versatile, portable, reliable, low in maintenance, easily serviceable, and ergonomic—in addition to being affordable to design, manufacture, sell, and buy.
This objective has been met with varying degrees of partial success.
Various methods of gases refrigeration have been known for a long time, including gases as a refrigerant itself. It has also been known that gases temperature rises upon compression and falls upon expansion. Therefore, many inventions have sought to exploit this property. The basic method is to compress the gases, remove the extra heat from the compressed gases, and expand the gases to render refrigerated gases. The method is sufficiently sound for the art to have exploited this process from 1878 through the date of this writing and most possibly beyond. However, few if any of these devices have enjoyed much commercial success in manufacture and sale, for various reasons inherent in their designs. Judging by its claims, the first patent to exploit the properties of compressed and expanded gases was U.S. Pat. No. 198,830, a refrigerator from the 1870s that used a plunger to compress gases into a coil resembling a “worm” in a whiskey still; the worm rests in a chamber filled with cool gases or water and terminates in the chamber to be cooled. The resulting invention was a noisy one, and the plunger would need to be replaced periodically, rendering the invention costly to maintain and impractical, assuming that it was effective.
The concept of using compressed and expanded gases as a refrigerant in cooling chambers such as refrigerators, freezers, and rooms continued in the art throughout the 20
th
century through to the date of this writing and beyond. The concept has proven especially effective as applied in cryogenic freezers to fast-freeze foodstuffs, as in U.S. Pat. Nos. 5,267,449 and 5,718,116, which use gases as the sole refrigerant. All of the aforementioned patents use variants of a system comprising of compressors, compression tanks, air-to-air or air-to-water heat exchangers, discharge vent(s), and requisite connecting tubing; some use one or more expansion tanks. Considering the tubing, which has a limited service life; the valves, which are prone to sticking and malfunction; the lack of portability, scalability and versatility; and the resultant unpleasant aerodynamic noise from a long distance of turbulent gases travel inside the tubing; units such as these are ergonomically deficient to the extent that units using liquid refrigerant are used in common practice, while cryogenic freezers are the only air-refrigerant devices in common use.
As most of the air-refrigerant devices in the art use systems of tubing and compressor tanks that are as bulky if not bulkier than their liquid-refrigerant equivalents, some of the art attempted to address this problem. U.S. Pat. No. 2,928,261, an air-refrigerant air conditioner for an automobile, reduces the system down to a compressor, tubing equipped with fins in the center, and an opening at the discharge end of the tube, which may be quipped with an optional expander turbine, which is driven by oil pressure. The system is a noisy one, considering the amount of turbulent airflow flowing through tubing terminating in a discharge end resembling the bell of a horn; the unit resembles a small trombone. In addition, the optional air expander driven by engine oil pressure would have introduced heat from the oil into the unit via conduction, rendering the unit ineffective. Finally, no provision is made for a sonic choke, so continuous airflow through the unit is not guaranteed.
The lack of commercial viability of air-refrigerant units has existed to the extent that liquid-refrigerant cooling systems have enjoyed far greater commercial success, as have simple convection fans when used in applications where liquid-refrigerant systems have been proven impractical due to size or cost. This phenomenon occurs despite the fact that, one, liquid-refrigerant systems are fraught with problems such as leakage of refrigerant that has known or presently unknown harmful effects; and two, conventional convection fans use no refrigeration by definition. In addition, conventional convection fans, occasionally with ducting systems, are relied upon to cool electronics when refrigeration is more desirable, especially during the current design trend toward more powerful machines, sometimes using heat-intensive 3-D chips, in smaller casings.
SUMMARY OF THE INVENTION
The venturi fan cooling system is a compact system that uses the proven method of cooling gases by compressing and expanding it, while simultaneously solving problems that prevented the prior art from becoming ergonomically acceptable to the public.
It has been very well known that it is possible for a venturi tube to be used to create a downdraft, and this knowledge has been frequently applied in the art. However, it is also known that, if the throat of the venturi tube is sufficiently narrow, then the constriction enables compression to build in the intake end of the tube if so desired. While there is still a small downdraft created, its proportion to the amount of gases that can be forced into the intake opening is so small that a significant amount of pressure can result. Therefore, the intake end of the venturi tube serves as a compression chamber. The narrow throat in the venturi tube also allows a fan to create a partial vacuum in the discharge end of the venturi tube by way of blowing gases out of the tube with a certain degree of force, thus creating an expansion chamber. The result is that a compression chamber, an expansion chamber, and transport means between the two can be integrated into a single compact unit simply by taking a venturi tube, narrowing the center, and furnishing means with which to force gases in and out of the tube. Gases can thus be compressed and expanded by a compact device while traveling a short distance. This benefits in greater operating efficiency and lower noise.
The heat resulting from compression can be removed while in the compression chamber, eliminating the need for a separate device to act as a heat exchanger. This is done by a plurality of turbinate cooling fins that are attached to the interior of the intake end of the venturi tube. As there is always a small downdraft occurring in the venturi tube, the gases in the entire unit are constantly moving. Therefore, gases can pass through the fins, which also promote turbulent flow to maximize heat transfer efficiency. The heat is transferred through the fins to the exterior of the intake end of the venturi tube, where it is dissipated via heat sink, liquid jacket, exterior cooling fins, or any other means or combination thereof.
As the gases pass through the constriction in the venturi tube, it travels at a very high velocity. It therefore loses pressure and therefore temperature. The lowered gas pressure and temperature are maintained in the discharge end of the venturi tube by means of turboexpansion. The discharge gases are therefore refrigerated.
It is known that all solid surfaces have acoustic properties. It is also known that parallel surfaces, when in the presence of gases that move in either a laminar or turbulent flow, create acoustic standing frequencies. These standing frequencies a
Look Edward K.
McAleenan J. M.
LandOfFree
Venturi fan does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Venturi fan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Venturi fan will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3214617