Surgery – Cardiac augmentation
Reexamination Certificate
2001-09-25
2004-02-03
Jastrazab, Jeffrey R. (Department: 3762)
Surgery
Cardiac augmentation
C600S037000
Reexamination Certificate
active
06685620
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to surgical devices and to methods of using them. In particular, the devices are used to support and to reform myocardial tissue in the region of and across an infarct. The devices provide support to the infarct in varying degrees by attachment of the inventive device to the myocardium at sites adjacent the infarct. A supporting component across the infarct, between the heart attachment sites, provides support to the myocardial wall and to the infarcted region. Optionally, but preferably, the supporting component includes a time-delay element that variously may allow the device to be safely manipulated and introduced onto the myocardial surface and then to change the distance between the ends of the support member or the amount of infarct support over time.
BACKGROUND OF THE INVENTION
This invention relates to devices and processes for treating, in particular, ischemic heart diseases, particularly myocardial infarction. The term “myocardial infarction” generally refers to the death of that tissue resulting from either inadequate blood supply or an absolute lack of blood supply to that tissue region. Classically, a “heart attack” occurs with the sudden onset of specific symptoms, followed by a specific series of electrocardiographic changes and a rise in serum levels of enzymes released from the myocardium. Total occlusion of a major coronary artery by thrombosis creates an infarcted area involving virtually the full thickness of the ventricular wall in the region of the heart supplied by the blocked artery. The occlusion of the coronary artery may occur more slowly and not completely block the artery. The resulting infarction then occurs over a significant period of time and may be less localized.
In the United States, myocardial infarction occurs in upwards of two million people a year. Less than half of those persons are hospitalized and a quarter to a third of them die suddenly outside of the hospital.
Coronary artery thrombosis almost always occurs at the site of an atheromatous plaque. Although plaque is present, it does not typically severely narrow the lumen of the affected artery before the thrombosis occurs. The formation of the thrombus is caused by a variety of events and likely may be considered to be the formation of a breakage in the intimal lining or hemorrhage within the plaque. Generally, plaques that are amenable to such fissuring are soft, rich in lipid, and formed in such a way that a fibrous cap overlies the softer lipid material. The fissure frequently occurs at the junction of the fibrous cap and a normal intima. As is a case with any vascular injury of this type, the response is an aggregation of platelets. The platelets begin a cascade of the release of thromboxane, promoting further platelet aggregation, coronary vasoconstriction, further reduction of blood flow, and formation of a thrombus. These coronary occlusions occur without warning signs in most instances, although physical activity and stress may have some role in causation.
In any case, these coronary accidents are easily detectable by electrocardiogram. Similarly, the treatment of acute myocardial infarction is typically via medication. Treatment of pain, perhaps by administering sublingual nitroglycerin is common. The goal of medicinal therapy in such cases is the opening of the partially closed artery. Administration of thrombolytics such as streptokinase, alteplace (recombinant tissue plasminogen activator—rt-PA), and anistreplase (anisoylated plasminogen streptokinase activated complex or APSAC) may be had. In some instances, angioplasty is administered, typically without thrombolysis, but on rare occasions with such a drug.
It is uncommon to treat infarcts with surgery unless there have been anatomic complications of the myocardial infarction, e.g., ventricular septal rupture, mitral regurgitation, ventricular aneurysms, ATC. Two procedures for dealing with myocardial infarcs via surgery are the Batista Procedure and the Dor Procedure, named after the surgeons who first performed them. In the Batista Procedure, the surgeon resects a portion of the heart to change its shape to a more correct cone shape. The Batista Procedure removes both healthy tissue and tissue not so healthy. The procedure is said not to be in favor due to high complication rates.
The Batista Procedure was replaced by a surgery known as the Dor Procedure. The Dor Procedure is less aggressive and apparently more effective. The Dor Procedure is typically used after an aneurysm forms following the presence of an infarct. The Dor Procedure is also called “endoventricular circular patch plasty” or EVCPP. The procedure creates a looped stitch pattern around a dead, scarred aneurysm to shrink the dead area. Any remaining defect may be covered by a patch made from DACRON or tissue. The aneurysm scar is closed over the outside of the patch to make the overall site more stable.
A variation of the Dor Procedure is called the SAVR Procedure, which stands for Surgical Anterior Ventricular Remodeling. This procedure opens the affected ventricle through the “akinetic” segment. A surgeon feels the beating heart and detects, using the fingers, where the heart muscle is not working. A suture is placed at the junction of a beating muscle and non-beating muscle that is typically semicircular, purse-string suture shape. A patch is then installed.
There are a variety of devices which are applied to the heart for treatment of congestive heart failure (CHF). Patents owned by Abiomed (U.S. Pat. Nos. 6,224,540; 5,800,528; 5,643,172) show a girdle-like device situated to provide structure to a failing heart. U.S. patents owned by Acorn Cardiovascular, Inc. (U.S. Pat. Nos. 6,241,654; 6,230,714; 6,193,648; 6,174,279; 6,169,922; 6,165,122; 6,165,121; 6,155,972; 6,126,590; 6,123,662; 6,085,754; 6,077,218; 5,702,343) show various devices, also for treatment of CHF, which typically include a mesh sock-like device placed around the myocardial wall. U.S. patents to Myocor, Inc. (U.S. Pat. Nos. 6,264,602; 6,261,222; 6,260,552; 6,183,411; 6,165,120; 6,165,119; 6,162,168; 6,077,214; 6,059,715; 6,050,936; 6,045,497; 5,961,440) show devices for treatment of CHF generally using components which pierce the ventricular wall.
None of the devices described in any of these patents suggests the devices and methods disclosed here.
SUMMARY OF THE INVENTION
This invention is a heart tissue supporting device comprising a.) at least one first heart tissue adherence region (each adapted to adhere to selected first heart tissue regions on a heart surface), b.) at least one second heart tissue adherence region, separated from the first heart tissue adherence regions and each adapted to adhere to selected second heart tissue regions on a heart surface, and c.) at least one support-providing member situated variously to maintain support to the tissue located between the first heart tissue adherence regions and the second heart tissue adherence regions.
The first and second heart tissue adherence regions may be at least partially surrounded by a region that is substantially non-adhering to heart tissue. The tissue support-maintaining member is sized and placeable to maintain the distance between the first and second heart tissue contact regions. The device may include a connector strap that is substantially non-adhering to heart tissue and is configured to connect the first and second heart tissue adherence regions around the heart not adjacent the infarct to form a loop surrounding the heart. The portions of the device that do not adhere to heart tissue may be made from non-adherent materials such as woven or non-woven polymeric fabrics, e.g., polyfluorocarbons and polyolefins, such as polytetrafluoroethylene (PTFE or TFE), ethylene-chlorofluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), polychlorotrifluoroethylene (PCTFE), polyvinylfluoride (PVF), polyvinylidenefluoride (PVDF), polyethylene (LDPE, LLDPE, and HDPE), and polypropylene.
The portions of the device that should adhere to the heart may be made of material
Andreas Bernard H.
Gifford, III Hanson S.
Jastrazab Jeffrey R.
The Foundry Inc.
Townsend and Townsend / and Crew LLP
LandOfFree
Ventricular infarct assist device and methods for using it does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ventricular infarct assist device and methods for using it, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ventricular infarct assist device and methods for using it will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3331760