Stock material or miscellaneous articles – Pile or nap type surface or component – Particular shape or structure of pile
Reexamination Certificate
2000-06-02
2004-04-13
Juska, Cheryl A. (Department: 1771)
Stock material or miscellaneous articles
Pile or nap type surface or component
Particular shape or structure of pile
C428S095000, C428S089000, C428S092000, C428S093000
Reexamination Certificate
active
06720058
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is related to a carpet mat and a moldable automotive carpet.
2. Description of the Prior Art
Molded automotive carpets and mats are typically made using tufted structures where the pile yarn is tufted into a planar spunbonded sheet, the tufts secured to the sheet, and the sheet then attached to a sound deadening backing to form a planar carpet. In the tufting process a significant amount of costly pile yarn is on the side of the spunbonded sheet that attaches to the backing. With very short pile heights the pile yarn wastefully buried in the backing makes up a large percentage of the pile yarn used.
To shape the carpet it is placed between platens in a press. The platen contacting the backing is heated to permanently secure the carpet to the backing. The carpet may also be molded and formed to the desired shape in the press. If it is desired to mold and shape the carpet the backing must be deformable.
The pile yarn is typically a “singles” (versus two or more yarns ply-twisted) bulked continuous filament (“BCF”) yarn with relatively straight filaments that is cut to give a velour appearance. Such a carpet requires a separate tufted sheet formation step and a laminating step to join it to a backing. During molding to a shape there is sometimes a problem of separation of the rows of tufts during severe deformation required in some molds. This can be compensated by adding more rows of tufts to the entire tufted sheet, but this results in a higher cost carpet.
There is a need to simplify this process to reduce pile yarn waste and reduce costs without sacrificing quality.
Tuftstrings and tuftstring carpets are disclosed in U.S. Pat. No. 5,547,732 (Edwards et al.), but the preferred embodiments there shown are intended for residential use on flat floors and are not adapted to reheating and forming. This patent does not teach use of a heavy sound deadening backing nor variation of tuft spacing that accommodates stretching during forming. It discloses an elongated pile article or “tuftstring” made using yarn comprising filaments attached to a support strand. In a preferred embodiment, the yarn is a ply-twisted bundle of filaments suitable for use in a cut pile residential carpet having a 38.1 mm (½ inch) pile height. This preferred pile yarn does not produce the velour look preferred for automotive carpets or mats. In one described embodiment of this patent the individual yarns remain plied together when cut so the pile provides tuft definition at the top surface of the carpet after assembly of the tuftstrings into a carpet. If the pile yarn along the length of the strand is examined the individual pile yarns can be identified and there is little or no entanglement between individual pile yarns along the length of the strand. All of the filaments in the pile yarns are also biased upward since they are bonded while bent over a ridge on a mandrel and the filaments are preferably all entangled or ply twisted together into a bundle. Such a preferred configuration of pile yarn is useful when arranged in a final carpet structure, but it can be a problem when storing tuftstring in a wound package before assembly into a carpet, and when handling tuftstring at high speed during assembly into a carpet.
With the preferred tuftstring of the Edwards et al. patent, when trying to get all the filaments to lie in a ribbon-like plane for winding, it is difficult to get the individual pile yarns aligned in the same direction without some yarns crossing the strand either over the top or bottom of the strand. The individual yarns can act independently with some yarns going one way and other yarns another. This is a particular problem if the chosen strand does not have any significant torsional stability. The upward configuration of all the filaments in the pile yarns also contributes to difficulties getting all the individual pile yarns bent into a flat ribbon for efficient winding. When guiding the preferred tuftstrings for assembly into a carpet the above problems associated with individual pile yarns acting independently makes guiding difficult, especially with a strand that has low torsional stability. Special guides are disclosed for handling tuftstrings described in Edwards et al. in the carpet-making process disclosed in related publications WO96/06685 (Popper et al.) and WO97/06003 (Agreen et al.) (now U.S. Pat. No. 5,804,008. U.S. Pat. No. 5,804,008 is hereby incorporated herein by reference.
It is important that all pile yarn be oriented upright in the carpet assembly. If the tuftstring flips over due to torsional instability, and it is bonded to a backing in that orientation, the carpet assembly will be rejected.
The Popper et al. publication also teaches a process for making moisture stable tuftstring carpets using ultrasonic energy for bonding the tuftstrings to a backing substrate. A preferred nylon carpet construction uses a nylon tuftstring having the nylon ply-twisted tufts of the Edwards et al. patent attached to a nylon covered strand which has a fiberglass core. This tuftstring is bonded to a backing substrate comprising a fiberglass scrim placed between two layers of non-bonded, nonwoven nylon sheet to make a moisture stable carpet. Such a backing is lightweight and flexible and is designed to be the final backing for a residential carpet. The pile yarn lacks the desired look for an automotive carpet and the backing is costly to use as an intermediate backing for an automotive carpet construction that requires a layer of heavy sound absorbing material for the backing. The glass scrim in the backing and the glass in the strand would make the carpet inelastic so stretching and drawing would not be possible.
SUMMARY OF THE INVENTION
The present invention is directed toward a pile article (tuftstring) structure suitable for automotive pile surface structures (carpet, mat or door panel) that is easy to guide for carpet forming and it is easy to form into a flat ribbon-like configuration suitable for winding into a package. The tuftstring has a pile yarn comprising BCF singles yarn, that is not twisted, ply-twisted, or otherwise entangled to form individual tufts, and that is cut to a pile height of less than 12.7 mm (½ inch) and preferably less than 6.4 mm (¼ inch). The strand can be a torsionally stable one with an uninterrupted outer surface, or one with a glass core with a wrapped staple yarn sheath that has little torsional stability. The tuftstring so made surprisingly has a beneficial geometry for high speed handling and flat winding. The filaments in the yarn are distributed along the length of the strand in a monolithic loosely entangled array of filaments extending outward from the strand in two spaced apart pile rows which provide some torsional stability to the tuftstring structure. By torsional stability is meant that a 38.1 mm (1½ inch) length can be twisted one hundred eighty (180) degrees about the axis of the strand and the pile yarn will still retain a monolithic structure without the filaments separating, and the tuftstring will return to near the original configuration unaided and without evidence that it has been twisted.
The distribution of the filaments about the strand has a surprising configuration. Looking at the cross-section of the tuftstring there are filaments along a lower side of each row that lie within ten (10) degrees to a plane defined at the base of the tuftstring. The remaining filaments for each row are continuously distributed through an angular sector, having an origin in the base plane aligned with the width of the strand, that extends from the lower side of the row to an upper side that falls between forth five (45) and ninety (90) degrees from the base and leaves a space between the two rows that is at least equal to the width of the strand. This space between the rows is important for inserting a guide member that contacts the strand without trapping filaments between the guide member and the strand. The filaments at the lower side of the rows are in
Pustolski Paul Felix
Weeks Gregory Paul
E.I. du Pont de Nemours and Company
Juska Cheryl A.
Medwick George M.
LandOfFree
Velour-like pile articles and pile surface structures and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Velour-like pile articles and pile surface structures and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Velour-like pile articles and pile surface structures and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3244705